Let's solve this expression step by step:
1. Convert mixed numbers to improper fractions:
$$1\frac{9}{16} = \frac{1 \cdot 16 + 9}{16} = \frac{25}{16}$$
$$3\frac{1}{5} = \frac{3 \cdot 5 + 1}{5} = \frac{16}{5}$$
$$1\frac{2}{3} = \frac{1 \cdot 3 + 2}{3} = \frac{5}{3}$$
$$2\frac{2}{5} = \frac{2 \cdot 5 + 2}{5} = \frac{12}{5}$$
$$17\frac{7}{12} = \frac{17 \cdot 12 + 7}{12} = \frac{211}{12}$$
$$6\frac{1}{3} = \frac{6 \cdot 3 + 1}{3} = \frac{19}{3}$$
2. Calculate the expression inside the parentheses:
$$(\frac{25}{16} \cdot \frac{16}{5} + \frac{5}{3} - 9 : \frac{12}{5})$$
3. Perform multiplication and division from left to right:
$$\frac{25}{16} \cdot \frac{16}{5} = \frac{25 \cdot 16}{16 \cdot 5} = \frac{25}{5} = 5$$
$$9 : \frac{12}{5} = 9 \cdot \frac{5}{12} = \frac{9 \cdot 5}{12} = \frac{45}{12} = \frac{15}{4}$$
4. Substitute the values back into the parentheses:
$$(5 + \frac{5}{3} - \frac{15}{4})$$
5. Find a common denominator for the fractions, which is 12:
$$5 + \frac{5 \cdot 4}{3 \cdot 4} - \frac{15 \cdot 3}{4 \cdot 3} = 5 + \frac{20}{12} - \frac{45}{12}$$
6. Perform the addition and subtraction:
$$5 + \frac{20 - 45}{12} = 5 - \frac{25}{12} = \frac{5 \cdot 12}{12} - \frac{25}{12} = \frac{60}{12} - \frac{25}{12} = \frac{35}{12}$$
7. Now, calculate the expression outside the parentheses:
$$\frac{35}{12} : (\frac{211}{12} - \frac{19}{3})$$
8. Find a common denominator for the subtraction:
$$\frac{211}{12} - \frac{19 \cdot 4}{3 \cdot 4} = \frac{211}{12} - \frac{76}{12} = \frac{211 - 76}{12} = \frac{135}{12}$$
9. Perform the division:
$$\frac{35}{12} : \frac{135}{12} = \frac{35}{12} \cdot \frac{12}{135} = \frac{35 \cdot 12}{12 \cdot 135} = \frac{35}{135} = \frac{7}{27}$$
So, the final answer is:
$$\frac{7}{27}$$