Вопрос:

Дано: ΔABC, ∠1=130°, AB=BC. Найти: ∠2.

Ответ:

Так как углы 1 и ACB - смежные, то ∠1 + ∠ACB = 180°. Отсюда:

$$∠ACB = 180° - ∠1 = 180° - 130° = 50°$$

Так как AB = BC, то треугольник ABC - равнобедренный. Тогда углы при основании AC равны, то есть ∠A = ∠C.

Сумма углов в треугольнике равна 180°, то есть ∠A + ∠B + ∠C = 180°. Заменим ∠A на ∠C:

$$∠C + ∠2 + ∠C = 180°$$ $$2∠C + ∠2 = 180°$$

Подставим значение угла C:

$$2 \cdot 50° + ∠2 = 180°$$ $$100° + ∠2 = 180°$$ $$∠2 = 180° - 100° = 80°$$

Ответ: ∠2 = 80°.

Смотреть решения всех заданий с листа
Подать жалобу Правообладателю

Похожие