Вопрос:

Контрольная работа Вариант - 2 Вычислить: 1) 0,2√4900 2) 7/8 √15/49 3) √361-10√2,89 4) 3,6√0,25+ 1/32 √256 2. a) √2/√50 б) √75/√192 в) √63⋅√7 г) √10⋅√90 3. a) √275 б) √363 а) √100x³ б) √32y⁴ 4. Выпишите коэффициенты a, b, c квадратного уравнения: a) x²-3x+17= 0; б) 3x² = 2; в) -7x + 16x2 = 0; г) √5x² = 0. 5. Решите квадратные уравнения 1)-x² = 5x; 2)18-x²≠ 0;

Ответ:

Решение заданий контрольной работы: 1. 1) $$0,2\sqrt{4900} = 0,2 \cdot 70 = 14$$ 2) $$\frac{7}{8} \sqrt{\frac{15}{49}} = \frac{7}{8} \cdot \frac{\sqrt{15}}{7} = \frac{\sqrt{15}}{8}$$ 3) $$\sqrt{361} - 10\sqrt{2,89} = 19 - 10 \cdot 1,7 = 19 - 17 = 2$$ 4) $$3,6\sqrt{0,25} + \frac{1}{32}\sqrt{256} = 3,6 \cdot 0,5 + \frac{1}{32} \cdot 16 = 1,8 + 0,5 = 2,3$$ 2. a) $$\sqrt{\frac{2}{50}} = \sqrt{\frac{1}{25}} = \frac{1}{5} = 0,2$$ б) $$\frac{\sqrt{75}}{\sqrt{192}} = \sqrt{\frac{75}{192}} = \sqrt{\frac{25}{64}} = \frac{5}{8} = 0,625$$ в) $$\sqrt{63} \cdot \sqrt{7} = \sqrt{63 \cdot 7} = \sqrt{9 \cdot 7 \cdot 7} = 3 \cdot 7 = 21$$ г) $$\sqrt{10} \cdot \sqrt{90} = \sqrt{10 \cdot 90} = \sqrt{900} = 30$$ 3. a) $$\sqrt{275} = \sqrt{25 \cdot 11} = 5\sqrt{11}$$ б) $$\sqrt{363} = \sqrt{121 \cdot 3} = 11\sqrt{3}$$ а) $$\sqrt{100x^3} = \sqrt{100 \cdot x^2 \cdot x} = 10x\sqrt{x}$$ б) $$\sqrt{32y^4} = \sqrt{16 \cdot 2 \cdot y^4} = 4y^2\sqrt{2}$$ 4. Выпишите коэффициенты a, b, c квадратного уравнения: a) $$x^2 - 3x + 17 = 0$$; a = 1, b = -3, c = 17 б) $$3x^2 = 2 \Rightarrow 3x^2 - 2 = 0$$; a = 3, b = 0, c = -2 в) $$-7x + 16x^2 = 0 \Rightarrow 16x^2 - 7x = 0$$; a = 16, b = -7, c = 0 г) $$\sqrt{5}x^2 = 0$$; a = √5, b = 0, c = 0 5. Решите квадратные уравнения 1) $$-x^2 = 5x \Rightarrow -x^2 - 5x = 0 \Rightarrow x^2 + 5x = 0 \Rightarrow x(x + 5) = 0$$ $$x_1 = 0, x_2 = -5$$ 2) $$18 - x^2 = 0 \Rightarrow x^2 = 18 \Rightarrow x = \pm \sqrt{18} = \pm \sqrt{9 \cdot 2} = \pm 3\sqrt{2}$$ $$x_1 = 3\sqrt{2}, x_2 = -3\sqrt{2}$$
Смотреть решения всех заданий с листа
Подать жалобу Правообладателю

Похожие