Решаю по порядку.
1) $$ \sqrt{548^2 - 420^2} = \sqrt{(548-420)(548+420)} = \sqrt{128 \cdot 968} = \sqrt{2^7 \cdot 2^3 \cdot 11^1} = \sqrt{2^{10} \cdot 11} = 2^5 \sqrt{11} = 32\sqrt{11} $$
2) $$\frac{(2\sqrt{3})^2}{5} = \frac{4 \cdot 3}{5} = \frac{12}{5} = 2.4$$
3) $$(\sqrt{13} - \sqrt{7})(\sqrt{13} + \sqrt{7}) = (\sqrt{13})^2 - (\sqrt{7})^2 = 13 - 7 = 6$$
4) $$\frac{\sqrt{2.8 \cdot \sqrt{4.2}}}{\sqrt{0.24}} = \sqrt{\frac{2.8 \cdot 4.2}{0.24}} = \sqrt{\frac{28 \cdot 42}{2.4}} = \sqrt{\frac{28 \cdot 42 \cdot 10}{24}} = \sqrt{\frac{7 \cdot 4 \cdot 7 \cdot 6 \cdot 10}{6 \cdot 4}} = \sqrt{7^2 \cdot 10} = 7\sqrt{10}$$
5) $$\left(\sqrt{\frac{2}{5}} - \sqrt{\frac{5}{2}}\right) : \sqrt{\frac{3}{20}} = \left(\sqrt{\frac{2}{5}} - \sqrt{\frac{5}{2}}\right) \cdot \sqrt{\frac{20}{3}} = \sqrt{\frac{2}{5}} \cdot \sqrt{\frac{20}{3}} - \sqrt{\frac{5}{2}} \cdot \sqrt{\frac{20}{3}} = \sqrt{\frac{2 \cdot 20}{5 \cdot 3}} - \sqrt{\frac{5 \cdot 20}{2 \cdot 3}} = \sqrt{\frac{8}{3}} - \sqrt{\frac{50}{3}} = \sqrt{\frac{8}{3}} - \sqrt{\frac{50}{3}} = \frac{2\sqrt{2}}{\sqrt{3}} - \frac{5\sqrt{2}}{\sqrt{3}} = \frac{2\sqrt{2} - 5\sqrt{2}}{\sqrt{3}} = \frac{-3\sqrt{2}}{\sqrt{3}} = -\sqrt{\frac{9 \cdot 2}{3}} = -\sqrt{6}$$
6) $$\frac{\sqrt{\frac{6}{7}}}{\sqrt{9} \cdot \sqrt{36}} = \frac{\sqrt{\frac{6}{7}}}{3 \cdot 6} = \frac{\sqrt{\frac{6}{7}}}{18} = \frac{\sqrt{6}}{18\sqrt{7}} = \frac{\sqrt{6}\sqrt{7}}{18\sqrt{7}\sqrt{7}} = \frac{\sqrt{42}}{18 \cdot 7} = \frac{\sqrt{42}}{126}$$
7) $$\sqrt[4]{4} = (2^2)^{\frac{1}{4}} = 2^{\frac{2}{4}} = 2^{\frac{1}{2}} = \sqrt{2}$$
8) $$\frac{(3\sqrt{5} - \sqrt{3})^2}{8 - \sqrt{15}} = \frac{9 \cdot 5 - 6\sqrt{15} + 3}{8 - \sqrt{15}} = \frac{48 - 6\sqrt{15}}{8 - \sqrt{15}} = \frac{6(8 - \sqrt{15})}{8 - \sqrt{15}} = 6$$
9) $$9 \cdot \sqrt[6]{243} \cdot \sqrt[30]{243} = 9 \cdot (3^5)^{\frac{1}{6}} \cdot (3^5)^{\frac{1}{30}} = 9 \cdot 3^{\frac{5}{6}} \cdot 3^{\frac{5}{30}} = 3^2 \cdot 3^{\frac{5}{6}} \cdot 3^{\frac{1}{6}} = 3^2 \cdot 3^{\frac{6}{6}} = 3^2 \cdot 3 = 9 \cdot 3 = 27$$
10) $$\frac{8\sqrt{x} - 2}{\sqrt{x}} + \frac{2\sqrt{x}}{x} = \frac{8\sqrt{x}}{\sqrt{x}} - \frac{2}{\sqrt{x}} + \frac{2\sqrt{x}}{(\sqrt{x})^2} = 8 - \frac{2}{\sqrt{x}} + \frac{2}{\sqrt{x}} = 8$$
11) $$\frac{\sqrt{m}}{\sqrt[12]{m} \cdot \sqrt[18]{m}} = \frac{m^{\frac{1}{2}}}{m^{\frac{1}{12}} \cdot m^{\frac{1}{18}}} = \frac{m^{\frac{1}{2}}}{m^{\frac{1}{12} + \frac{1}{18}}} = \frac{m^{\frac{1}{2}}}{m^{\frac{3+2}{36}}} = \frac{m^{\frac{1}{2}}}{m^{\frac{5}{36}}} = m^{\frac{1}{2} - \frac{5}{36}} = m^{\frac{18-5}{36}} = m^{\frac{13}{36}} = \sqrt[36]{m^{13}}$$\
12) $$x + \sqrt{x^2 - 4x + 4} = x + \sqrt{(x-2)^2} = x + |x - 2|$$
Если $$x \le 2$$, то $$|x-2| = 2 - x$$
Тогда: $$x + 2 - x = 2$$
13) $$\sqrt{(a-3)^2} + \sqrt{(a-9)^2} = |a-3| + |a-9|$$
Так как $$3 \le a \le 9$$, то $$|a-3| = a - 3$$, а $$|a-9| = 9 - a$$
Тогда: $$a - 3 + 9 - a = 6$$
14) $$\frac{(\sqrt{5a^2})^8}{(\sqrt{3a})^{12} \cdot \sqrt[4]{a^4}} = \frac{(5a^2)^4}{(3a)^6 \cdot a} = \frac{5^4 \cdot a^8}{3^6 \cdot a^6 \cdot a} = \frac{625 \cdot a^8}{729 \cdot a^7} = \frac{625 \cdot a}{729}$$
15) $$\sqrt{\frac{81\sqrt[7]{b}}{\sqrt[14]{b}}} = \sqrt{\frac{81 \cdot b^{\frac{1}{7}}}{b^{\frac{1}{14}}}} = \sqrt{81 \cdot b^{\frac{1}{7} - \frac{1}{14}}} = \sqrt{81 \cdot b^{\frac{2-1}{14}}} = \sqrt{81 \cdot b^{\frac{1}{14}}} = \sqrt{81} \cdot \sqrt{b^{\frac{1}{14}}} = 9 \cdot b^{\frac{1}{28}} = 9 \sqrt[28]{b}$$
16) $$\frac{a^{13}}{\sqrt[9]{\sqrt{m}}} = \frac{a^{13}}{\sqrt[18]{m}} = \frac{a^{13}}{m^{\frac{1}{18}}}$$
Тут ошибка в условии, скорее всего, должно быть $$ \frac{a^{13}}{\sqrt[9]{\sqrt{a}}} $$
Если так, то: $$\frac{a^{13}}{\sqrt[9]{\sqrt{a}}} = \frac{a^{13}}{\sqrt[18]{a}} = \frac{a^{13}}{a^{\frac{1}{18}}} = a^{13 - \frac{1}{18}} = a^{\frac{234 - 1}{18}} = a^{\frac{233}{18}} = \sqrt[18]{a^{233}}$$
17) $$\frac{\sqrt[16]{m}}{\sqrt[12]{21\sqrt{a}} - 4\sqrt[7]{\sqrt[18]{a}}}$$
Тут ошибка в условии, скорее всего, должно быть $$ \frac{\sqrt[16]{m}}{12\sqrt[6]{21\sqrt{a}} - 4\sqrt[7]{\sqrt[18]{a}}} $$
Если так, то: $$ \frac{\sqrt[16]{a}}{12\sqrt[6]{\sqrt[21]{a}} - 4\sqrt[7]{\sqrt[18]{a}}} = \frac{\sqrt[16]{a}}{12\sqrt[126]{a} - 4\sqrt[126]{a}} = \frac{\sqrt[16]{a}}{8\sqrt[126]{a}} = \frac{a^{\frac{1}{16}}}{8a^{\frac{1}{126}}} = \frac{a^{\frac{63-8}{1008}}}{8} = \frac{a^{\frac{55}{1008}}}{8} = \frac{\sqrt[1008]{a^{55}}}{8} $$
18) $$\frac{4\sqrt[3]{a}}{\sqrt[12]{a}} = 4 \cdot \frac{a^{\frac{1}{3}}}{a^{\frac{1}{12}}} = 4 \cdot a^{\frac{1}{3} - \frac{1}{12}} = 4 \cdot a^{\frac{4-1}{12}} = 4 \cdot a^{\frac{3}{12}} = 4 \cdot a^{\frac{1}{4}} = 4\sqrt[4]{a}$$
19) Невозможно решить, не зная g(x)
20) Невозможно решить, не зная h(x)
21) $$\sqrt[4]{m} \cdot \sqrt[12]{m} $$ при $$m = 4096$$
$$m = 4096 = 2^{12}$$
Тогда: $$\sqrt[4]{2^{12}} \cdot \sqrt[12]{2^{12}} = (2^{12})^{\frac{1}{4}} \cdot (2^{12})^{\frac{1}{12}} = 2^3 \cdot 2 = 8 \cdot 2 = 16$$
22) $$\frac{2\sqrt{x} + 3}{\sqrt[12]{a}} - \frac{3\sqrt{x}}{\sqrt[24]{a}} - x + 5 $$ при $$x = -3$$
Выражение не имеет смысла при x = -3, так как корень из отрицательного числа не существует.
23) $$ \frac{a \sqrt{a}}{\sqrt[12]{a}} $$ при $$ a = 0.5 $$
$$ \frac{a \sqrt{a}}{\sqrt[12]{a}} = \frac{a^1 \cdot a^{\frac{1}{2}}}{a^{\frac{1}{12}}} = \frac{a^{\frac{3}{2}}}{a^{\frac{1}{12}}}=a^{\frac{3}{2}-\frac{1}{12}} = a^{\frac{18-1}{12}}= a^{\frac{17}{12}}= (\frac{1}{2})^{\frac{17}{12}}= \frac{1}{\sqrt[12]{2^{17}}}=\frac{1}{2\sqrt[12]{2^5}}=\frac{1}{2\sqrt[12]{32}} $$
24) $$ \sqrt[4]{64} \cdot \sqrt[12]{64} $$
$$ \sqrt[4]{64} \cdot \sqrt[12]{64} = (2^6)^{\frac{1}{4}} \cdot (2^6)^{\frac{1}{12}}= 2^{\frac{3}{2}} \cdot 2^{\frac{1}{2}}= 2^{\frac{3}{2}+\frac{1}{2}}= 2^{\frac{4}{2}}= 2^2 = 4$$