Вопрос:

Постройте таблицы истинности для следующих логических выражений: 1) B & (A v B); 2) A & (B v. B); 3) A & (A v B v C); 4) AvBvC.

Ответ:

1) \(B \& (A \lor B)\) | A | B | A \lor B | B \& (A \lor B) | |---|---|----------|---------------| | 0 | 0 | 0 | 0 | | 0 | 1 | 1 | 1 | | 1 | 0 | 1 | 0 | | 1 | 1 | 1 | 1 | 2) \(A \& (B \lor \overline{B})\) | A | B | \overline{B} | B \lor \overline{B} | A \& (B \lor \overline{B}) | |---|---|-----------------|-----------------------|---------------------------| | 0 | 0 | 1 | 1 | 0 | | 0 | 1 | 0 | 1 | 0 | | 1 | 0 | 1 | 1 | 1 | | 1 | 1 | 0 | 1 | 1 | 3) \(A \& (A \lor B \lor \overline{C})\) | A | B | C | \overline{C} | A \lor B \lor \overline{C} | A \& (A \lor B \lor \overline{C}) | |---|---|---|-----------------|------------------------------|---------------------------------| | 0 | 0 | 0 | 1 | 1 | 0 | | 0 | 0 | 1 | 0 | 0 | 0 | | 0 | 1 | 0 | 1 | 1 | 0 | | 0 | 1 | 1 | 0 | 1 | 0 | | 1 | 0 | 0 | 1 | 1 | 1 | | 1 | 0 | 1 | 0 | 1 | 1 | | 1 | 1 | 0 | 1 | 1 | 1 | | 1 | 1 | 1 | 0 | 1 | 1 | 4) \(A \lor B \lor \overline{C}\) | A | B | C | \overline{C} | A \lor B \lor \overline{C} | |---|---|---|-----------------|------------------------------| | 0 | 0 | 0 | 1 | 1 | | 0 | 0 | 1 | 0 | 0 | | 0 | 1 | 0 | 1 | 1 | | 0 | 1 | 1 | 0 | 1 | | 1 | 0 | 0 | 1 | 1 | | 1 | 0 | 1 | 0 | 1 | | 1 | 1 | 0 | 1 | 1 | | 1 | 1 | 1 | 0 | 1 |
Смотреть решения всех заданий с листа
Подать жалобу Правообладателю

Похожие