363.
1) $$6 \cdot (\frac{2}{3}a + \frac{5}{12}b) = 6 \cdot \frac{2}{3}a + 6 \cdot \frac{5}{12}b = \frac{12}{3}a + \frac{30}{12}b = 4a + \frac{5}{2}b = 4a + 2.5b$$
2) $$\frac{1}{3} \cdot (\frac{9}{11}m - \frac{6}{7}n) = \frac{1}{3} \cdot \frac{9}{11}m - \frac{1}{3} \cdot \frac{6}{7}n = \frac{9}{33}m - \frac{6}{21}n = \frac{3}{11}m - \frac{2}{7}n$$
3) $$12 \cdot (\frac{3}{4}x + \frac{13}{18}y - \frac{1}{24}z) = 12 \cdot \frac{3}{4}x + 12 \cdot \frac{13}{18}y - 12 \cdot \frac{1}{24}z = \frac{36}{4}x + \frac{156}{18}y - \frac{12}{24}z = 9x + \frac{26}{3}y - \frac{1}{2}z$$
4) $$1\frac{1}{7} \cdot (7p + \frac{21}{24}q - 1\frac{3}{4}) = \frac{8}{7} \cdot (7p + \frac{21}{24}q - \frac{7}{4}) = \frac{8}{7} \cdot 7p + \frac{8}{7} \cdot \frac{21}{24}q - \frac{8}{7} \cdot \frac{7}{4} = 8p + \frac{168}{168}q - \frac{56}{28} = 8p + q - 2$$
364.
1) $$14 \cdot (\frac{1}{2}m + \frac{3}{7}n) = 14 \cdot \frac{1}{2}m + 14 \cdot \frac{3}{7}n = \frac{14}{2}m + \frac{42}{7}n = 7m + 6n$$
2) $$\frac{1}{6} \cdot (\frac{12}{17}b - \frac{18}{23}c) = \frac{1}{6} \cdot \frac{12}{17}b - \frac{1}{6} \cdot \frac{18}{23}c = \frac{12}{102}b - \frac{18}{138}c = \frac{2}{17}b - \frac{3}{23}c$$
3) $$8 \cdot (\frac{1}{4}p - \frac{5}{24}q + \frac{7}{12}t) = 8 \cdot \frac{1}{4}p - 8 \cdot \frac{5}{24}q + 8 \cdot \frac{7}{12}t = \frac{8}{4}p - \frac{40}{24}q + \frac{56}{12}t = 2p - \frac{5}{3}q + \frac{14}{3}t$$
4) $$1\frac{3}{4} \cdot (4a + \frac{16}{21}b - 2\frac{2}{3}) = \frac{7}{4} \cdot (4a + \frac{16}{21}b - \frac{8}{3}) = \frac{7}{4} \cdot 4a + \frac{7}{4} \cdot \frac{16}{21}b - \frac{7}{4} \cdot \frac{8}{3} = 7a + \frac{112}{84}b - \frac{56}{12} = 7a + \frac{4}{3}b - \frac{14}{3}$$