Решение:
1. Разложите на множители:
1) a) $$a - 4a^{\frac{1}{2}}$$
$$a - 4\sqrt{a} = \sqrt{a}(\sqrt{a} - 4)$$
б) $$b^2 + 3b^{\frac{1}{4}}$$
$$b^2 + 3\sqrt[4]{b} = \sqrt[4]{b}(b^{7/4} + 3)$$
2) a) $$x^{\frac{1}{2}} + 10x^{\frac{1}{4}}$$
$$\sqrt{x} + 10\sqrt[4]{x} = \sqrt[4]{x}(\sqrt[4]{x} + 10)$$
б) $$y^{\frac{3}{4}} - 2y^{\frac{1}{2}}$$
$$\sqrt[4]{y^3} - 2\sqrt{y} = \sqrt{y}(\sqrt[4]{y^{3/2}} - 2)$$
в) $$(x^{\frac{1}{2}})^2 - 9$$
$$x - 9 = (\sqrt{x} - 3)(\sqrt{x} + 3)$$
г) $$(y^{\frac{1}{3}})^3 - 27$$
$$y - 27 = (\sqrt[3]{y} - 3)(y^{2/3} + 3\sqrt[3]{y} + 9)$$
в) $$cd^{\frac{1}{10}} + cd^{\frac{1}{5}}$$
$$cd^{\frac{1}{10}} + cd^{\frac{2}{10}} = cd^{\frac{1}{10}}(1 + d^{\frac{1}{10}})$$
г) $$p^{\frac{2}{9}} - p^{\frac{1}{9}}$$
$$p^{\frac{1}{9}}(p^{\frac{1}{9}} - 1)$$
д) $$a^{\frac{2}{3}} - b^{\frac{2}{3}}$$
$$(\sqrt[3]{a} - \sqrt[3]{b})(a^{\frac{1}{3}} + b^{\frac{1}{3}})$$
e) $$x^{\frac{2}{2}} + y^{\frac{2}{2}}$$
$$x+y$$
д) $$b - 25$$, где $$b \ge 0$$
$$(\sqrt{b} - 5)(\sqrt{b} + 5)$$
e) $$a - 125$$, где $$a > 0$$
$$(\sqrt[3]{a} - 5)(a^{\frac{2}{3}} + 5\sqrt[3]{a} + 25)$$
2. Сократите дробь:
1) a) $$\frac{a + 6a^{\frac{1}{2}}}{a^{\frac{1}{2}} + 5} = \frac{\sqrt{a}(\sqrt{a} + 6)}{\sqrt{a}+5}$$
б) $$\frac{5b^{\frac{1}{2}}}{b^{\frac{1}{2}} + 3b^{\frac{1}{4}}} = \frac{5\sqrt{b}}{\sqrt{b} + 3\sqrt[4]{b}}$$
2) a) $$\frac{x - 3x^{\frac{2}{2}}}{x^{\frac{2}{2}} - 3x} = \frac{x - 3x}{x - 3x} = \frac{-2x}{-2x} = 1$$
б) $$\frac{y^{\frac{1}{3}} + y^{\frac{5}{6}}}{y^{\frac{1}{3}} - y^{\frac{5}{6}}} = \frac{\sqrt[3]{y} + \sqrt[6]{y^5}}{\sqrt[3]{y} - \sqrt[6]{y^5}}$$
в) $$\frac{x - y}{x^{0.5} + y^{0.5}}$$
$$\frac{x - y}{\sqrt{x} + \sqrt{y}} = \frac{(\sqrt{x} - \sqrt{y})(\sqrt{x} + \sqrt{y})}{\sqrt{x} + \sqrt{y}} = \sqrt{x} - \sqrt{y}$$
г) $$\frac{x^{1.5}y + xy^{1.5}}{xy^{0.5} + x^{0.5}y} = \frac{xy(\sqrt{x} + \sqrt{y})}{\sqrt{xy}(\sqrt{x} + \sqrt{y})} = \frac{xy}{\sqrt{xy}} = \sqrt{xy}$$
д) $$\frac{a^{\frac{3}{2}} + b^{\frac{3}{2}}}{a - a^{\frac{1}{2}}b^{\frac{1}{2}} + b} = \frac{(\sqrt{a} + \sqrt{b})(a - \sqrt{ab} + b)}{a - \sqrt{ab} + b} = \sqrt{a} + \sqrt{b}$$
e) $$\frac{p - q}{p^{\frac{1}{3}} - q^{\frac{1}{3}}} = \frac{(p^{\frac{1}{3}} - q^{\frac{1}{3}})(p^{\frac{2}{3}} + p^{\frac{1}{3}}q^{\frac{1}{3}} + q^{\frac{2}{3}})}{p^{\frac{1}{3}} - q^{\frac{1}{3}}} = p^{\frac{2}{3}} + p^{\frac{1}{3}}q^{\frac{1}{3}} + q^{\frac{2}{3}}$$
в) $$\frac{9a - b}{3a - a^{0.5}b^{0.5}} = \frac{(3\sqrt{a} - \sqrt{b})(3\sqrt{a} + \sqrt{b})}{\sqrt{a}(3\sqrt{a} - \sqrt{b})} = \frac{3\sqrt{a} + \sqrt{b}}{\sqrt{a}}$$
д) $$\frac{a^{\frac{3}{2}}b^{\frac{1}{2}} - ab + a^{\frac{1}{2}}b^{\frac{3}{2}}}{a + b} = \frac{\sqrt{ab}(a - \sqrt{ab} + b)}{a + b}$$
г) $$\frac{p^{\frac{2}{5}} - q^{\frac{2}{5}}}{p^{\frac{4}{1}} + p^{\frac{1}{5}}q^{\frac{1}{5}}}$$
e) $$\frac{x^{\frac{0.3}{}} - y^{\frac{0.3}{}}}{x^{\frac{0.1}{}} - y^{\frac{0.1}{}}}$$
3. Найдите значение выражения:
$$\frac{y - 49y^{0.5}}{y^{0.75} - 7y^{0.5}}$$, при $$y = 2.25$$
$$\frac{y - 49\sqrt{y}}{\sqrt[4]{y^3} - 7\sqrt{y}}$$
Подставим $$y = 2.25$$
$$\sqrt{y} = \sqrt{2.25} = 1.5$$
$$\sqrt[4]{y^3} = \sqrt[4]{2.25^3} = \sqrt[4]{11.39} \approx 1.83$$
Тогда:
$$\frac{2.25 - 49 \cdot 1.5}{1.83 - 7 \cdot 1.5} = \frac{2.25 - 73.5}{1.83 - 10.5} = \frac{-71.25}{-8.67} \approx 8.22$$
Ответ: 8.22