1.
а) $$\sqrt[3]{-27} = -3$$
б) $$\sqrt[12]{(-11)^{12}} = |-11| = 11$$
в) $$\sqrt[3]{-1 \frac{91}{125}} = \sqrt[3]{\frac{-125-91}{125}} = \sqrt[3]{\frac{-216}{125}} = -\frac{6}{5} = -1.2$$
г) $$\sqrt[3]{-216} + \sqrt[4]{625} = -6 + 5 = -1$$
2.
Упростим выражение: $$\sqrt[3]{x \sqrt[5]{x}} = \sqrt[3]{x \cdot x^{\frac{1}{5}}} = \sqrt[3]{x^{\frac{6}{5}}} = x^{\frac{6}{5} \cdot \frac{1}{3}} = x^{\frac{2}{5}}$$
Найдем значение при $$x = \sqrt[6]{5} = 5^{\frac{1}{6}}$$:
$$\left(5^{\frac{1}{6}}\right)^{\frac{2}{5}} = 5^{\frac{1}{6} \cdot \frac{2}{5}} = 5^{\frac{1}{15}} = \sqrt[15]{5}$$
3.
а) $$125^{\frac{2}{3}} - (\frac{1}{81})^{-\frac{3}{4}} - (\sqrt[4]{49})^2 = (5^3)^{\frac{2}{3}} - (81)^{\frac{3}{4}} - (7^{\frac{1}{2}})^2 = 5^2 - (3^4)^{\frac{3}{4}} - 7 = 25 - 3^3 - 7 = 25 - 27 - 7 = -9$$
б) $$(64^{\frac{1}{4}} - 36^{\frac{1}{4}})(64^{\frac{1}{4}} + 36^{\frac{1}{4}}) = (2^{\frac{6}{4}} - 6^{\frac{2}{4}})(2^{\frac{6}{4}} + 6^{\frac{2}{4}}) = (2^{\frac{3}{2}} - 6^{\frac{1}{2}})(2^{\frac{3}{2}} + 6^{\frac{1}{2}}) = (2^{\frac{3}{2}})^2 - (6^{\frac{1}{2}})^2 = 2^3 - 6 = 8 - 6 = 2$$