Вопрос:

Задание 8. А. Найдите значение выражения при данном значении переменной в Б. Найдите значение выражения при данных значениях переменных а и в:

Ответ:

А. Найдите значение выражения при данном значении переменной b:

Выражение b = -3 b = -1 b = 0 b = 2
1) $$b - 1$$ $$-3 - 1 = -4$$ $$-1 - 1 = -2$$ $$0 - 1 = -1$$ $$2 - 1 = 1$$
2) $$1 - b$$ $$1 - (-3) = 1 + 3 = 4$$ $$1 - (-1) = 1 + 1 = 2$$ $$1 - 0 = 1$$ $$1 - 2 = -1$$
3) $$1 - b^2$$ $$1 - (-3)^2 = 1 - 9 = -8$$ $$1 - (-1)^2 = 1 - 1 = 0$$ $$1 - 0^2 = 1 - 0 = 1$$ $$1 - 2^2 = 1 - 4 = -3$$
4) $$b^2 - 1$$ $$(-3)^2 - 1 = 9 - 1 = 8$$ $$(-1)^2 - 1 = 1 - 1 = 0$$ $$0^2 - 1 = 0 - 1 = -1$$ $$2^2 - 1 = 4 - 1 = 3$$
5) $$1 - b^3$$ $$1 - (-3)^3 = 1 - (-27) = 1 + 27 = 28$$ $$1 - (-1)^3 = 1 - (-1) = 1 + 1 = 2$$ $$1 - 0^3 = 1 - 0 = 1$$ $$1 - 2^3 = 1 - 8 = -7$$
6) $$2b - 1$$ $$2 cdot (-3) - 1 = -6 - 1 = -7$$ $$2 cdot (-1) - 1 = -2 - 1 = -3$$ $$2 cdot 0 - 1 = 0 - 1 = -1$$ $$2 cdot 2 - 1 = 4 - 1 = 3$$
7) $$2 - b$$ $$2 - (-3) = 2 + 3 = 5$$ $$2 - (-1) = 2 + 1 = 3$$ $$2 - 0 = 2$$ $$2 - 2 = 0$$
8) $$(1 - b)^2$$ $$(1 - (-3))^2 = (1 + 3)^2 = 4^2 = 16$$ $$(1 - (-1))^2 = (1 + 1)^2 = 2^2 = 4$$ $$(1 - 0)^2 = 1^2 = 1$$ $$(1 - 2)^2 = (-1)^2 = 1$$

Б. Найдите значение выражения при данных значениях переменных a и b:

Выражение a = 1, b = 1 a = 2, b = -1 a = -2, b = -3 a = -1, b = 1
1) $$2a + b$$ $$2 cdot 1 + 1 = 2 + 1 = 3$$ $$2 cdot 2 + (-1) = 4 - 1 = 3$$ $$2 cdot (-2) + (-3) = -4 - 3 = -7$$ $$2 cdot (-1) + 1 = -2 + 1 = -1$$
2) $$2(a + b)$$ $$2 cdot (1 + 1) = 2 cdot 2 = 4$$ $$2 cdot (2 + (-1)) = 2 cdot (2 - 1) = 2 cdot 1 = 2$$ $$2 cdot (-2 + (-3)) = 2 cdot (-2 - 3) = 2 cdot (-5) = -10$$ $$2 cdot (-1 + 1) = 2 cdot 0 = 0$$
3) $$2a + b^2$$ $$2 cdot 1 + 1^2 = 2 + 1 = 3$$ $$2 cdot 2 + (-1)^2 = 4 + 1 = 5$$ $$2 cdot (-2) + (-3)^2 = -4 + 9 = 5$$ $$2 cdot (-1) + 1^2 = -2 + 1 = -1$$
4) $$2(a + b^2)$$ $$2 cdot (1 + 1^2) = 2 cdot (1 + 1) = 2 cdot 2 = 4$$ $$2 cdot (2 + (-1)^2) = 2 cdot (2 + 1) = 2 cdot 3 = 6$$ $$2 cdot (-2 + (-3)^2) = 2 cdot (-2 + 9) = 2 cdot 7 = 14$$ $$2 cdot (-1 + 1^2) = 2 cdot (-1 + 1) = 2 cdot 0 = 0$$
5) $$2(a + b)^2$$ $$2 cdot (1 + 1)^2 = 2 cdot 2^2 = 2 cdot 4 = 8$$ $$2 cdot (2 + (-1))^2 = 2 cdot (2 - 1)^2 = 2 cdot 1^2 = 2 cdot 1 = 2$$ $$2 cdot (-2 + (-3))^2 = 2 cdot (-2 - 3)^2 = 2 cdot (-5)^2 = 2 cdot 25 = 50$$ $$2 cdot (-1 + 1)^2 = 2 cdot 0^2 = 2 cdot 0 = 0$$
6) $$2a^2 + b$$ $$2 cdot 1^2 + 1 = 2 cdot 1 + 1 = 2 + 1 = 3$$ $$2 cdot 2^2 + (-1) = 2 cdot 4 - 1 = 8 - 1 = 7$$ $$2 cdot (-2)^2 + (-3) = 2 cdot 4 - 3 = 8 - 3 = 5$$ $$2 cdot (-1)^2 + 1 = 2 cdot 1 + 1 = 2 + 1 = 3$$
7) $$2(a^2 + b)$$ $$2 cdot (1^2 + 1) = 2 cdot (1 + 1) = 2 cdot 2 = 4$$ $$2 cdot (2^2 + (-1)) = 2 cdot (4 - 1) = 2 cdot 3 = 6$$ $$2 cdot ((-2)^2 + (-3)) = 2 cdot (4 - 3) = 2 cdot 1 = 2$$ $$2 cdot ((-1)^2 + 1) = 2 cdot (1 + 1) = 2 cdot 2 = 4$$
8) $$2a^2 + b^2$$ $$2 cdot 1^2 + 1^2 = 2 cdot 1 + 1 = 2 + 1 = 3$$ $$2 cdot 2^2 + (-1)^2 = 2 cdot 4 + 1 = 8 + 1 = 9$$ $$2 cdot (-2)^2 + (-3)^2 = 2 cdot 4 + 9 = 8 + 9 = 17$$ $$2 cdot (-1)^2 + 1^2 = 2 cdot 1 + 1 = 2 + 1 = 3$$
Смотреть решения всех заданий с листа
Подать жалобу Правообладателю

Похожие