Для перевода радианной меры угла в градусную, нужно воспользоваться формулой:
$$ \alpha^{\circ} = \alpha \cdot \frac{180^{\circ}}{\pi} $$2) \(\frac{7\pi}{6} =\)
\(\frac{7\pi}{6} = \frac{7 \cdot 180^{\circ}}{6} = 7 \cdot 30^{\circ} = 210^{\circ} \)
\(\frac{5\pi}{6} = \frac{5 \cdot 180^{\circ}}{6} = 5 \cdot 30^{\circ} = 150^{\circ} \)
\(\frac{\pi}{6} = \frac{180^{\circ}}{6} = 30^{\circ} \)
\(\frac{14\pi}{6} = \frac{14 \cdot 180^{\circ}}{6} = 14 \cdot 30^{\circ} = 420^{\circ} \)
g) \(\frac{8\pi}{3} =\)
\(\frac{8\pi}{3} = \frac{8 \cdot 180^{\circ}}{3} = 8 \cdot 60^{\circ} = 480^{\circ} \)
\(\frac{\pi}{3} = \frac{180^{\circ}}{3} = 60^{\circ} \)
\(\frac{3\pi}{3} = \frac{3 \cdot 180^{\circ}}{3} = 180^{\circ} \)
\(\frac{17\pi}{3} = \frac{17 \cdot 180^{\circ}}{3} = 17 \cdot 60^{\circ} = 1020^{\circ} \)
e) \(-\frac{\pi}{18} =\)
\(-\frac{\pi}{18} = -\frac{180^{\circ}}{18} = -10^{\circ} \)
\(-\frac{21\pi}{18} = -\frac{21 \cdot 180^{\circ}}{18} = -21 \cdot 10^{\circ} = -210^{\circ} \)
\(-\frac{17\pi}{12} = -\frac{17 \cdot 180^{\circ}}{12} = -17 \cdot 15^{\circ} = -255^{\circ} \)
\(-\frac{13\pi}{9} = -\frac{13 \cdot 180^{\circ}}{9} = -13 \cdot 20^{\circ} = -260^{\circ} \)
Ответ:
2) \(\frac{7\pi}{6} = 210^{\circ} \), \(\frac{5\pi}{6} = 150^{\circ} \), \(\frac{\pi}{6} = 30^{\circ} \), \(\frac{14\pi}{6} = 420^{\circ} \)
g) \(\frac{8\pi}{3} = 480^{\circ} \), \(\frac{\pi}{3} = 60^{\circ} \), \(\frac{3\pi}{3} = 180^{\circ} \), \(\frac{17\pi}{3} = 1020^{\circ} \)
e) \(-\frac{\pi}{18} = -10^{\circ} \), \(-\frac{21\pi}{18} = -210^{\circ} \), \(-\frac{17\pi}{12} = -255^{\circ} \), \(-\frac{13\pi}{9} = -260^{\circ} \)