Решим уравнения:
11) \(\frac{x}{2x+3} = \frac{1}{x}\)
\(x^2 = 2x + 3\)
\(x^2 - 2x - 3 = 0\)
По теореме Виета:
\(x_1 = -1\), \(x_2 = 3\)
Ответ: \(x_1 = -1\), \(x_2 = 3\)
12) \(\frac{x}{20-x} = \frac{1}{x}\)
\(x^2 = 20 - x\)
\(x^2 + x - 20 = 0\)
По теореме Виета:
\(x_1 = -5\), \(x_2 = 4\)
Ответ: \(x_1 = -5\), \(x_2 = 4\)
13) \(4 + \frac{21}{x} = x\)
\(\frac{4x + 21}{x} = x\)
\(4x + 21 = x^2\)
\(x^2 - 4x - 21 = 0\)
По теореме Виета:
\(x_1 = -3\), \(x_2 = 7\)
Ответ: \(x_1 = -3\), \(x_2 = 7\)
14) \(3 + \frac{10}{x} = x\)
\(\frac{3x + 10}{x} = x\)
\(3x + 10 = x^2\)
\(x^2 - 3x - 10 = 0\)
По теореме Виета:
\(x_1 = -2\), \(x_2 = 5\)
Ответ: \(x_1 = -2\), \(x_2 = 5\)
15) \(\frac{6}{x} + \frac{6}{x+1} = 5\)
\(\frac{6(x+1) + 6x}{x(x+1)} = 5\)
\(6x + 6 + 6x = 5x(x+1)\)
\(12x + 6 = 5x^2 + 5x\)
\(5x^2 - 7x - 6 = 0\)
\(D = (-7)^2 - 4 \cdot 5 \cdot (-6) = 49 + 120 = 169\)
\(x_1 = \frac{7 - \sqrt{169}}{2 \cdot 5} = \frac{7 - 13}{10} = \frac{-6}{10} = -0.6\)
\(x_2 = \frac{7 + \sqrt{169}}{2 \cdot 5} = \frac{7 + 13}{10} = \frac{20}{10} = 2\)
Ответ: \(x_1 = -0.6\), \(x_2 = 2\)
16) \(\frac{3}{x} + \frac{3}{x+2} = 4\)
\(\frac{3(x+2) + 3x}{x(x+2)} = 4\)
\(3x + 6 + 3x = 4x(x+2)\)
\(6x + 6 = 4x^2 + 8x\)
\(4x^2 + 2x - 6 = 0\)
\(2x^2 + x - 3 = 0\)
\(D = 1^2 - 4 \cdot 2 \cdot (-3) = 1 + 24 = 25\)
\(x_1 = \frac{-1 - \sqrt{25}}{2 \cdot 2} = \frac{-1 - 5}{4} = \frac{-6}{4} = -1.5\)
\(x_2 = \frac{-1 + \sqrt{25}}{2 \cdot 2} = \frac{-1 + 5}{4} = \frac{4}{4} = 1\)
Ответ: \(x_1 = -1.5\), \(x_2 = 1\)
17) \(\frac{1}{x} + \frac{2}{x+2} = 1\)
\(\frac{x+2 + 2x}{x(x+2)} = 1\)
\(3x + 2 = x(x+2)\)
\(3x + 2 = x^2 + 2x\)
\(x^2 - x - 2 = 0\)
По теореме Виета:
\(x_1 = -1\), \(x_2 = 2\)
Ответ: \(x_1 = -1\), \(x_2 = 2\)
18) \(\frac{3}{x} - \frac{3}{x+4} = 1\)
\(\frac{3(x+4) - 3x}{x(x+4)} = 1\)
\(3x + 12 - 3x = x(x+4)\)
\(12 = x^2 + 4x\)
\(x^2 + 4x - 12 = 0\)
По теореме Виета:
\(x_1 = -6\), \(x_2 = 2\)
Ответ: \(x_1 = -6\), \(x_2 = 2\)
Ответ: Решения выше.
Все решено! Ты хорошо поработал! Не останавливайся на достигнутом! У тебя все получиться! Я в тебя верю! Молодец!