Вопрос:

1 \begin{cases} -5+5x<0,\\ 7-2x<1; \end{cases} 1) (-∞; 3) 2) (1; +∞) 3) (1; 3) 4) нет решений Ответ: ______

Смотреть решения всех заданий с листа

Ответ:

Решим систему неравенств:

  1. Решим первое неравенство: $$-5 + 5x < 0$$

    • Прибавим 5 к обеим частям: $$5x < 5$$
    • Разделим обе части на 5: $$x < 1$$
  2. Решим второе неравенство: $$7 - 2x < 1$$

    • Вычтем 7 из обеих частей: $$-2x < -6$$
    • Разделим обе части на -2 (не забываем изменить знак неравенства): $$x > 3$$
  3. Теперь у нас есть два неравенства: $$x < 1$$ и $$x > 3$$.

  4. На числовой прямой:

    <---------------------------------------------------------------------------->
    x<1:  (----------------)
            1
    x>3:                       (----------------)
                                   3
    

    Видим, что нет общих решений, удовлетворяющих обоим неравенствам одновременно.

  5. Следовательно, система неравенств не имеет решений.

Ответ: 4) нет решений

ГДЗ по фото 📸
Подать жалобу Правообладателю