1) $$\frac{4^{-6}}{4^{-5} \cdot 4^{-1}} \cdot \frac{4^{-2}}{4^{-6}}$$
- $$\frac{4^{-6}}{4^{-5} \cdot 4^{-1}} = \frac{4^{-6}}{4^{-5+(-1)}} = \frac{4^{-6}}{4^{-6}} = 4^{-6-(-6)} = 4^{-6+6} = 4^0 = 1$$
- $$\frac{4^{-2}}{4^{-6}} = 4^{-2-(-6)} = 4^{-2+6} = 4^4 = 256$$
- $$1 \cdot 256 = 256$$
Ответ: 256
2) $$\frac{2^{6}}{2^{9} \cdot 2^{-5}} \cdot \frac{2^{3}}{2^{7}}$$
- $$\frac{2^{6}}{2^{9} \cdot 2^{-5}} = \frac{2^{6}}{2^{9+(-5)}} = \frac{2^{6}}{2^{4}} = 2^{6-4} = 2^2 = 4$$
- $$\frac{2^{3}}{2^{7}} = 2^{3-7} = 2^{-4} = \frac{1}{2^4} = \frac{1}{16}$$
- $$4 \cdot \frac{1}{16} = \frac{4}{16} = \frac{1}{4} = 0.25$$
Ответ: 0.25
3) $$\frac{2^{8}}{2^{-7} \cdot 2^{6}}$$
- $$2^{-7} \cdot 2^{6} = 2^{-7+6} = 2^{-1} = \frac{1}{2}$$
- $$\frac{2^{8}}{2^{-1}} = 2^{8-(-1)} = 2^{8+1} = 2^9 = 512$$
Ответ: 512