Решим данные пропорции. Для этого выразим неизвестную переменную x. Используем основное свойство пропорции: произведение крайних членов равно произведению средних членов.
9) \( 1 \frac{1}{2} = \frac{x}{1 \frac{2}{3}} \)
\( 1 \frac{1}{2} = \frac{3}{2} \)
\( 1 \frac{2}{3} = \frac{5}{3} \)
\( \frac{3}{2} = \frac{x}{\frac{5}{3}} \)
Чтобы найти делимое, нужно делитель умножить на частное.
\( x = \frac{3}{2} \cdot \frac{5}{3} = \frac{3 \cdot 5}{2 \cdot 3} = \frac{5}{2} \)
\( x = 2 \frac{1}{2} \)
\( \frac{2}{6 \frac{2}{3}} = x \)
\( 6 \frac{2}{3} = \frac{20}{3} \)
\( \frac{2}{\frac{20}{3}} = x \)
Чтобы разделить число на дробь, нужно это число умножить на дробь, обратную данной.
\( x = 2 \cdot \frac{3}{20} = \frac{2 \cdot 3}{20} = \frac{6}{20} = \frac{3}{10} \)
\( x = 0.3 \)
13) \( 2 \frac{16}{8} = \frac{6 \frac{1}{4}}{3 \frac{15}{x}} \)
\( 2 \frac{16}{8} = 2 + \frac{16}{8} = 2 + 2 = 4 \)
\( 6 \frac{1}{4} = \frac{25}{4} \)
\( \frac{25}{4} : 4 = \frac{25}{4} \cdot \frac{1}{4} = \frac{25}{16} = 1 \frac{9}{16} \)
\( 3 \frac{15}{x} = 1 \frac{9}{16} \)
\( \frac{15}{x} = 1 \frac{9}{16} - 3 = \frac{25}{16} - 3 = \frac{25}{16} - \frac{48}{16} = -\frac{23}{16} \)
\( \frac{15}{x} = - \frac{23}{16} \)
\( x = 15 : (- \frac{23}{16}) = 15 \cdot (- \frac{16}{23}) = -\frac{15 \cdot 16}{23} = -\frac{240}{23} = -10 \frac{10}{23} \)
14) \( \frac{x}{1 \frac{23}{49}} = \frac{15 \frac{2}{5}}{12 \frac{6}{7}} \)
\( 1 \frac{23}{49} = \frac{72}{49} \)
\( 15 \frac{2}{5} = \frac{77}{5} \)
\( 12 \frac{6}{7} = \frac{90}{7} \)
\( \frac{\frac{77}{5}}{\frac{90}{7}} = \frac{77 \cdot 7}{5 \cdot 90} = \frac{539}{450} = 1 \frac{89}{450} \)
\( \frac{x}{\frac{72}{49}} = 1 \frac{89}{450} \)
\( x = \frac{72}{49} \cdot \frac{539}{450} = \frac{72 \cdot 539}{49 \cdot 450} = \frac{38808}{22050} = \frac{4312}{2450} = \frac{2156}{1225} = 1 \frac{931}{1225} \)
11) \( 1 \frac{11}{24} = \frac{x}{1 \frac{7}{9}} \)
\( 1 \frac{11}{24} = \frac{35}{24} \)
\( 1 \frac{7}{9} = \frac{16}{9} \)
\( \frac{35}{24} = \frac{x}{\frac{16}{9}} \)
\( x = \frac{35}{24} \cdot \frac{16}{9} = \frac{35 \cdot 16}{24 \cdot 9} = \frac{560}{216} = \frac{280}{108} = \frac{140}{54} = \frac{70}{27} = 2 \frac{16}{27} \)
\( \frac{x}{\frac{4}{21}} = 2 \frac{16}{27} \)
\( x = \frac{4}{21} \cdot \frac{70}{27} = \frac{4 \cdot 70}{21 \cdot 27} = \frac{280}{567} = \frac{40}{81} \)
15) \( 4 \frac{2}{6 \frac{2}{15}} = \frac{x}{15 \frac{2}{3}} \)
\( 4 \frac{2}{\frac{92}{15}} = \frac{4 \cdot 92}{15} = \frac{368}{15} = 24 \frac{8}{15} \)
\( 6 \frac{2}{15} = \frac{92}{15} \)
\( 15 \frac{2}{3} = \frac{47}{3} \)
\( \frac{24 \frac{8}{15}}{x} = \frac{47}{3} \)
\( \frac{\frac{368}{15}}{x} = \frac{47}{3} \)
\( x = \frac{368}{15} : \frac{47}{3} = \frac{368 \cdot 3}{15 \cdot 47} = \frac{1104}{705} = \frac{368}{235} = 1 \frac{133}{235} \)
12) \( 1 \frac{17}{25} = \frac{1 \frac{1}{5}}{1 \frac{5}{16}} ; x \)
\( 1 \frac{17}{25} = \frac{42}{25} \)
\( 1 \frac{1}{5} = \frac{6}{5} \)
\( 1 \frac{5}{16} = \frac{21}{16} \)
\( \frac{42}{25} = \frac{\frac{6}{5}}{x} : \frac{21}{16} \)
\( \frac{6}{5} : \frac{21}{16} = \frac{6 \cdot 16}{5 \cdot 21} = \frac{96}{105} \)
\( \frac{42}{25} = \frac{\frac{96}{105}}{x} \)
\( x = \frac{96}{105} : \frac{42}{25} = \frac{96 \cdot 25}{105 \cdot 42} = \frac{2400}{4410} = \frac{240}{441} = \frac{80}{147} \)
16) \( 5 \frac{5}{18} = \frac{9 \frac{1}{2}}{x} ; \frac{2}{5 \frac{2}{3}} \)
\( 5 \frac{5}{18} = \frac{95}{18} \)
\( 9 \frac{1}{2} = \frac{19}{2} \)
\( 5 \frac{2}{3} = \frac{17}{3} \)
\( \frac{95}{18} = \frac{\frac{19}{2}}{x} : \frac{2}{\frac{17}{3}} \)
\( \frac{2}{\frac{17}{3}} = \frac{2 \cdot 3}{17} = \frac{6}{17} \)
\( \frac{19}{2} : \frac{6}{17} = \frac{19 \cdot 17}{2 \cdot 6} = \frac{323}{12} \)
\( \frac{95}{18} = \frac{\frac{323}{12}}{x} \)
\( x = \frac{323}{12} : \frac{95}{18} = \frac{323 \cdot 18}{12 \cdot 95} = \frac{5814}{1140} = \frac{2907}{570} = \frac{969}{190} = 5 \frac{19}{190} \)
Ответ: См. решение