a) \(\frac{3b+7}{3b} - \frac{b^2-5}{b^2} = \frac{(3b+7)b}{3b^2} - \frac{3(b^2-5)}{3b^2} = \frac{3b^2+7b-3b^2+15}{3b^2} = \frac{7b+15}{3b^2}\)
б) \(\frac{1}{4p+q} - \frac{1}{4p-q} = \frac{1(4p-q)}{(4p+q)(4p-q)} - \frac{1(4p+q)}{(4p+q)(4p-q)} = \frac{4p-q-4p-q}{(4p)^2-q^2} = \frac{-2q}{16p^2-q^2}\)
в) \(\frac{5-4y}{y^2-6y} + \frac{4}{y-6} = \frac{5-4y}{y(y-6)} + \frac{4}{y-6} = \frac{5-4y}{y(y-6)} + \frac{4y}{y(y-6)} = \frac{5-4y+4y}{y(y-6)} = \frac{5}{y(y-6)}\)
Ответ: a) \(\frac{7b+15}{3b^2}\); б) \(\frac{-2q}{16p^2-q^2}\); в) \(\frac{5}{y(y-6)}\)