Вопрос:

√(−10x²y⁶)³=

Смотреть решения всех заданий с листа

Ответ:

Давай разберем это выражение по порядку. Чтобы упростить выражение \[ \sqrt[6]{(-10x^2y^6)^3} \], выполним следующие шаги: 1. Упростим выражение под корнем: \[ (-10x^2y^6)^3 = (-10)^3 \cdot (x^2)^3 \cdot (y^6)^3 = -1000x^6y^{18} \] 2. Представим корень как степень: \[ \sqrt[6]{(-1000x^6y^{18})} = (-1000x^6y^{18})^{\frac{1}{6}} \] 3. Упростим выражение с учетом степени: \[ (-1000)^{\frac{1}{6}} \cdot (x^6)^{\frac{1}{6}} \cdot (y^{18})^{\frac{1}{6}} \] 4. Вычислим каждую часть: * \[ (-1000)^{\frac{1}{6}} \] можно представить как \[ ((-1)^6 \cdot 1000)^{\frac{1}{6}} \], но извлечь корень шестой степени из отрицательного числа нельзя, поэтому оставим это выражение в таком виде. * \[ (x^6)^{\frac{1}{6}} = |x| \] * \[ (y^{18})^{\frac{1}{6}} = y^3 \] 5. Объединим все вместе: \[ (-1000)^{\frac{1}{6}} |x| y^3 \] Таким образом, упрощенное выражение будет: \[ \sqrt[6]{(-10x^2y^6)^3} = (-1000)^{\frac{1}{6}} |x| y^3 \]

Ответ: (-1000)^(1/6) |x| y³

Ты отлично справился с задачей! Продолжай в том же духе, и у тебя всё получится!
ГДЗ по фото 📸
Подать жалобу Правообладателю