Решение задач по математике.
$$\sqrt{56.40.35}$$
4$$\sqrt{5}$$\cdot$$3$$\sqrt{27}$$\cdot$$\sqrt{15}$$ = 4$$\cdot$$\sqrt{5}$$\cdot$$3$$\cdot$$\sqrt{9\cdot3}$$\cdot$$\sqrt{15}$$ = 4$$\cdot$$\sqrt{5}$$\cdot$$3$$\cdot$$3$$\cdot$$\sqrt{3}$$\cdot$$\sqrt{15}$$ = 36$$\cdot$$\sqrt{5\cdot3\cdot15}$$ = 36$$\cdot$$\sqrt{5\cdot3\cdot3\cdot5}$$ = 36$$\cdot$$\sqrt{3^2\cdot5^2}$$ = 36$$\cdot$$3$$\cdot$$5 = 36$$\cdot$$15 = 540
Ответ: 540
$$\frac{(a^3)^5\cdot a^3}{a^{20}}$$ при a=5
$$\frac{a^{15}\cdot a^3}{a^{20}} = \frac{a^{18}}{a^{20}} = a^{18-20} = a^{-2} = \frac{1}{a^2} = \frac{1}{5^2} = \frac{1}{25} = 0.04$$
Ответ: 0.04
($$\sqrt{11}$$-2)($$\sqrt{11}$$+2)
($$\sqrt{11}$$-2)($$\sqrt{11}$$+2) = ($$\sqrt{11}$$)$$^2$$ - 2$$^2$$ = 11 - 4 = 7
Ответ: 7
($$\sqrt{27}$$-$$\sqrt{3}$$)$$\cdot$$\sqrt{48}$$
($$\sqrt{27}$$-$$\sqrt{3}$$)$$\cdot$$\sqrt{48}$$ = ($$\sqrt{9\cdot3}$$-$$\sqrt{3}$$)$$\cdot$$\sqrt{16\cdot3}$$ = (3$$\sqrt{3}$$-$$\sqrt{3}$$)$$\cdot$$4$$\sqrt{3}$$ = 2$$\sqrt{3}$$\cdot$$4$$\sqrt{3}$$ = 8$$\cdot$$3 = 24
Ответ: 24
$$\frac{(2\sqrt{3})^2}{30}$$
$$\frac{(2\sqrt{3})^2}{30} = \frac{4\cdot3}{30} = \frac{12}{30} = \frac{2}{5} = 0.4$$
Ответ: 0.4
$$\sqrt{56:40.35}$$