Выполним задание:
$$√{a^2+10ab+25b^2} = √{(1\frac{6}{13})^2 + 10 \cdot 1\frac{6}{13} \cdot \frac{4}{13} + 25 \cdot (\frac{4}{13})^2}$$
$$1\frac{6}{13} = \frac{1 \cdot 13 + 6}{13} = \frac{13 + 6}{13} = \frac{19}{13}$$
$$√{(\frac{19}{13})^2 + 10 \cdot \frac{19}{13} \cdot \frac{4}{13} + 25 \cdot (\frac{4}{13})^2} = √{\frac{361}{169} + \frac{760}{169} + \frac{400}{169}} = √{\frac{361 + 760 + 400}{169}} = √{\frac{1521}{169}} = \frac{√{1521}}{√{169}} = \frac{39}{13} = 3$$
Ответ: 3