Решаю уравнения.
№ 394
$$\frac{x}{20 - x} = \frac{1}{x}$$
Решение:
$$x^2 = 20 - x$$
$$x^2 + x - 20 = 0$$
$$D = 1^2 - 4 \cdot 1 \cdot (-20) = 1 + 80 = 81$$
$$x_1 = \frac{-1 + \sqrt{81}}{2 \cdot 1} = \frac{-1 + 9}{2} = \frac{8}{2} = 4$$
$$x_2 = \frac{-1 - \sqrt{81}}{2 \cdot 1} = \frac{-1 - 9}{2} = \frac{-10}{2} = -5$$
Ответ: x = 4, x = -5
№ 395
$$4 + \frac{21}{x} = x$$
Решение:
$$4x + 21 = x^2$$
$$x^2 - 4x - 21 = 0$$
$$D = (-4)^2 - 4 \cdot 1 \cdot (-21) = 16 + 84 = 100$$
$$x_1 = \frac{4 + \sqrt{100}}{2 \cdot 1} = \frac{4 + 10}{2} = \frac{14}{2} = 7$$
$$x_2 = \frac{4 - \sqrt{100}}{2 \cdot 1} = \frac{4 - 10}{2} = \frac{-6}{2} = -3$$
Ответ: x = 7, x = -3
№ 396
$$3 + \frac{10}{x} = x$$
Решение:
$$3x + 10 = x^2$$
$$x^2 - 3x - 10 = 0$$
$$D = (-3)^2 - 4 \cdot 1 \cdot (-10) = 9 + 40 = 49$$
$$x_1 = \frac{3 + \sqrt{49}}{2 \cdot 1} = \frac{3 + 7}{2} = \frac{10}{2} = 5$$
$$x_2 = \frac{3 - \sqrt{49}}{2 \cdot 1} = \frac{3 - 7}{2} = \frac{-4}{2} = -2$$
Ответ: x = 5, x = -2
№ 397
$$\frac{6}{x} + \frac{6}{x+1} = 5$$
Решение:
$$\frac{6(x+1) + 6x}{x(x+1)} = 5$$
$$\frac{6x + 6 + 6x}{x^2 + x} = 5$$
$$\frac{12x + 6}{x^2 + x} = 5$$
$$12x + 6 = 5(x^2 + x)$$
$$12x + 6 = 5x^2 + 5x$$
$$5x^2 + 5x - 12x - 6 = 0$$
$$5x^2 - 7x - 6 = 0$$
$$D = (-7)^2 - 4 \cdot 5 \cdot (-6) = 49 + 120 = 169$$
$$x_1 = \frac{7 + \sqrt{169}}{2 \cdot 5} = \frac{7 + 13}{10} = \frac{20}{10} = 2$$
$$x_2 = \frac{7 - \sqrt{169}}{2 \cdot 5} = \frac{7 - 13}{10} = \frac{-6}{10} = -0.6$$
Ответ: x = 2, x = -0.6
№ 398
$$\frac{3}{x} + \frac{3}{x+2} = 4$$
Решение:
$$\frac{3(x+2) + 3x}{x(x+2)} = 4$$
$$\frac{3x + 6 + 3x}{x^2 + 2x} = 4$$
$$\frac{6x + 6}{x^2 + 2x} = 4$$
$$6x + 6 = 4(x^2 + 2x)$$
$$6x + 6 = 4x^2 + 8x$$
$$4x^2 + 8x - 6x - 6 = 0$$
$$4x^2 + 2x - 6 = 0$$
$$2x^2 + x - 3 = 0$$
$$D = 1^2 - 4 \cdot 2 \cdot (-3) = 1 + 24 = 25$$
$$x_1 = \frac{-1 + \sqrt{25}}{2 \cdot 2} = \frac{-1 + 5}{4} = \frac{4}{4} = 1$$
$$x_2 = \frac{-1 - \sqrt{25}}{2 \cdot 2} = \frac{-1 - 5}{4} = \frac{-6}{4} = -1.5$$
Ответ: x = 1, x = -1.5
№ 399
$$\frac{1}{x} + \frac{2}{x+2} = 1$$
Решение:
$$\frac{1(x+2) + 2x}{x(x+2)} = 1$$
$$\frac{x + 2 + 2x}{x^2 + 2x} = 1$$
$$\frac{3x + 2}{x^2 + 2x} = 1$$
$$3x + 2 = x^2 + 2x$$
$$x^2 + 2x - 3x - 2 = 0$$
$$x^2 - x - 2 = 0$$
$$D = (-1)^2 - 4 \cdot 1 \cdot (-2) = 1 + 8 = 9$$
$$x_1 = \frac{1 + \sqrt{9}}{2 \cdot 1} = \frac{1 + 3}{2} = \frac{4}{2} = 2$$
$$x_2 = \frac{1 - \sqrt{9}}{2 \cdot 1} = \frac{1 - 3}{2} = \frac{-2}{2} = -1$$
Ответ: x = 2, x = -1
№ 400
$$\frac{3}{x} - \frac{3}{x+4} = 1$$
Решение:
$$\frac{3(x+4) - 3x}{x(x+4)} = 1$$
$$\frac{3x + 12 - 3x}{x^2 + 4x} = 1$$
$$\frac{12}{x^2 + 4x} = 1$$
$$12 = x^2 + 4x$$
$$x^2 + 4x - 12 = 0$$
$$D = 4^2 - 4 \cdot 1 \cdot (-12) = 16 + 48 = 64$$
$$x_1 = \frac{-4 + \sqrt{64}}{2 \cdot 1} = \frac{-4 + 8}{2} = \frac{4}{2} = 2$$
$$x_2 = \frac{-4 - \sqrt{64}}{2 \cdot 1} = \frac{-4 - 8}{2} = \frac{-12}{2} = -6$$
Ответ: x = 2, x = -6