Решение:
б) $$(4 \frac{1}{3} - 3 \frac{3}{2})^2 \cdot (2 \frac{1}{4})^2$$
- $$4 \frac{1}{3} = \frac{4 \cdot 3 + 1}{3} = \frac{12 + 1}{3} = \frac{13}{3}$$
- $$3 \frac{3}{2} = \frac{3 \cdot 2 + 3}{2} = \frac{6 + 3}{2} = \frac{9}{2}$$
- $$\frac{13}{3} - \frac{9}{2} = \frac{13 \cdot 2}{3 \cdot 2} - \frac{9 \cdot 3}{2 \cdot 3} = \frac{26}{6} - \frac{27}{6} = -\frac{1}{6}$$
- $$(-\frac{1}{6})^2 = \frac{1}{36}$$
- $$2 \frac{1}{4} = \frac{2 \cdot 4 + 1}{4} = \frac{8 + 1}{4} = \frac{9}{4}$$
- $$(\frac{9}{4})^2 = \frac{81}{16}$$
- $$\frac{1}{36} \cdot \frac{81}{16} = \frac{1 \cdot 81}{36 \cdot 16} = \frac{81}{576} = \frac{9 \cdot 9}{9 \cdot 64} = \frac{9}{64}$$
Ответ: $$\frac{9}{64}$$