Выполним вычисления.
-
$$\sin(-\frac{3\pi}{4}) + \cos(-\frac{\pi}{4}) + \sin(\frac{\pi}{4}) \cdot \cos(\frac{\pi}{2}) + \cos(0) \cdot \sin(\frac{\pi}{2})$$
$$\sin(-\frac{3\pi}{4}) = -\sin(\frac{3\pi}{4}) = -\sin(\pi - \frac{\pi}{4}) = -\sin(\frac{\pi}{4}) = -\frac{\sqrt{2}}{2}$$
$$\cos(-\frac{\pi}{4}) = \cos(\frac{\pi}{4}) = \frac{\sqrt{2}}{2}$$
$$\sin(\frac{\pi}{4}) = \frac{\sqrt{2}}{2}$$
$$\cos(\frac{\pi}{2}) = 0$$
$$\cos(0) = 1$$
$$\sin(\frac{\pi}{2}) = 1$$
$$-\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2} \cdot 0 + 1 \cdot 1 = 0 + 0 + 1 = 1$$
Ответ: 1
-
$$\cos(\frac{5\pi}{3}) + \cos(\frac{4\pi}{3}) + \sin(\frac{3\pi}{2}) \cdot \sin(\frac{5\pi}{8}) \cdot \cos(\frac{3\pi}{2})$$
$$\cos(\frac{5\pi}{3}) = \cos(2\pi - \frac{\pi}{3}) = \cos(\frac{\pi}{3}) = \frac{1}{2}$$
$$\cos(\frac{4\pi}{3}) = \cos(\pi + \frac{\pi}{3}) = -\cos(\frac{\pi}{3}) = -\frac{1}{2}$$
$$\sin(\frac{3\pi}{2}) = -1$$
$$\cos(\frac{3\pi}{2}) = 0$$
$$\frac{1}{2} - \frac{1}{2} + (-1) \cdot \sin(\frac{5\pi}{8}) \cdot 0 = 0 + 0 = 0$$
Ответ: 0
-
$$\sin(\frac{\pi}{4}) + \cos(-\frac{3\pi}{4}) - 2 \cdot \sin(-\frac{\pi}{6}) + 2 \cdot \cos(\frac{5\pi}{6})$$
$$\sin(\frac{\pi}{4}) = \frac{\sqrt{2}}{2}$$
$$\cos(-\frac{3\pi}{4}) = \cos(\frac{3\pi}{4}) = \cos(\pi - \frac{\pi}{4}) = -\cos(\frac{\pi}{4}) = -\frac{\sqrt{2}}{2}$$
$$\sin(-\frac{\pi}{6}) = -\sin(\frac{\pi}{6}) = -\frac{1}{2}$$
$$\cos(\frac{5\pi}{6}) = \cos(\pi - \frac{\pi}{6}) = -\cos(\frac{\pi}{6}) = -\frac{\sqrt{3}}{2}$$
$$\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2} - 2 \cdot (-\frac{1}{2}) + 2 \cdot (-\frac{\sqrt{3}}{2}) = 0 + 1 - \sqrt{3} = 1 - \sqrt{3}$$
Ответ: $$1 - \sqrt{3}$$
-
$$3 \cdot \cos(\frac{\pi}{3}) - 2 \cdot \sin(\frac{2\pi}{3}) + 7 \cdot \cos(-\frac{2\pi}{3}) - \sin(-\frac{5\pi}{4})$$
$$\cos(\frac{\pi}{3}) = \frac{1}{2}$$
$$\sin(\frac{2\pi}{3}) = \sin(\pi - \frac{\pi}{3}) = \sin(\frac{\pi}{3}) = \frac{\sqrt{3}}{2}$$
$$\cos(-\frac{2\pi}{3}) = \cos(\frac{2\pi}{3}) = \cos(\pi - \frac{\pi}{3}) = -\cos(\frac{\pi}{3}) = -\frac{1}{2}$$
$$\sin(-\frac{5\pi}{4}) = -\sin(\frac{5\pi}{4}) = -\sin(\pi + \frac{\pi}{4}) = \sin(\frac{\pi}{4}) = \frac{\sqrt{2}}{2}$$
$$3 \cdot \frac{1}{2} - 2 \cdot \frac{\sqrt{3}}{2} + 7 \cdot (-\frac{1}{2}) - \frac{\sqrt{2}}{2} = \frac{3}{2} - \sqrt{3} - \frac{7}{2} - \frac{\sqrt{2}}{2} = -2 - \sqrt{3} - \frac{\sqrt{2}}{2}$$
Ответ: $$-2 - \sqrt{3} - \frac{\sqrt{2}}{2}$$
-
$$3 \cdot \cos(\frac{7\pi}{4}) + 2 \cdot \sin(\frac{3\pi}{4}) - \sin(-\frac{9\pi}{4}) + 7 \cdot \cos(\frac{13\pi}{2})$$
$$\cos(\frac{7\pi}{4}) = \cos(2\pi - \frac{\pi}{4}) = \cos(\frac{\pi}{4}) = \frac{\sqrt{2}}{2}$$
$$\sin(\frac{3\pi}{4}) = \sin(\pi - \frac{\pi}{4}) = \sin(\frac{\pi}{4}) = \frac{\sqrt{2}}{2}$$
$$\sin(-\frac{9\pi}{4}) = -\sin(\frac{9\pi}{4}) = -\sin(2\pi + \frac{\pi}{4}) = -\sin(\frac{\pi}{4}) = -\frac{\sqrt{2}}{2}$$
$$\cos(\frac{13\pi}{2}) = \cos(6\pi + \frac{\pi}{2}) = \cos(\frac{\pi}{2}) = 0$$
$$3 \cdot \frac{\sqrt{2}}{2} + 2 \cdot \frac{\sqrt{2}}{2} - (-\frac{\sqrt{2}}{2}) + 7 \cdot 0 = \frac{3\sqrt{2}}{2} + \sqrt{2} + \frac{\sqrt{2}}{2} + 0 = 3\sqrt{2}$$
Ответ: $$3\sqrt{2}$$
-
$$2 \cdot \sin(-\frac{5\pi}{6}) + 11 \cdot \cos(-\frac{\pi}{3}) + \sin(\frac{7\pi}{6}) - 8 \cdot \cos(\frac{2\pi}{3})$$
$$\sin(-\frac{5\pi}{6}) = -\sin(\frac{5\pi}{6}) = -\sin(\pi - \frac{\pi}{6}) = -\sin(\frac{\pi}{6}) = -\frac{1}{2}$$
$$\cos(-\frac{\pi}{3}) = \cos(\frac{\pi}{3}) = \frac{1}{2}$$
$$\sin(\frac{7\pi}{6}) = \sin(\pi + \frac{\pi}{6}) = -\sin(\frac{\pi}{6}) = -\frac{1}{2}$$
$$\cos(\frac{2\pi}{3}) = \cos(\pi - \frac{\pi}{3}) = -\cos(\frac{\pi}{3}) = -\frac{1}{2}$$
$$2 \cdot (-\frac{1}{2}) + 11 \cdot \frac{1}{2} + (-\frac{1}{2}) - 8 \cdot (-\frac{1}{2}) = -1 + \frac{11}{2} - \frac{1}{2} + 4 = 3 + \frac{10}{2} = 3 + 5 = 8$$
Ответ: 8