We can factor out $$\frac{1}{9}$$ from the expression:
$$\frac{1}{9}a^2 - \frac{2}{9}ab + \frac{1}{9}b^2 = \frac{1}{9}(a^2 - 2ab + b^2)$$
Now, the expression inside the parentheses is a perfect square trinomial: $$a^2 - 2ab + b^2 = (a-b)^2$$
Therefore, $$\frac{1}{9}a^2 - \frac{2}{9}ab + \frac{1}{9}b^2 = \frac{1}{9}(a-b)^2 = \frac{(a-b)^2}{9} = (\frac{a-b}{3})^2$$
Answer: $$\frac{1}{9}(a - b)^2$$ or $$(\frac{a-b}{3})^2$$