Преобразуем уравнение:
$$\sqrt{2} \left(\sin x \cos \frac{\pi}{4} + \cos x \sin \frac{\pi}{4}\right) + 2\sin^2 x = \sin x + 2$$ $$\sqrt{2} \left(\sin x \cdot \frac{\sqrt{2}}{2} + \cos x \cdot \frac{\sqrt{2}}{2}\right) + 2\sin^2 x = \sin x + 2$$ $$\sin x + \cos x + 2\sin^2 x = \sin x + 2$$ $$\cos x + 2\sin^2 x = 2$$ $$\cos x + 2(1 - \cos^2 x) = 2$$ $$\cos x + 2 - 2\cos^2 x = 2$$ $$2\cos^2 x - \cos x = 0$$ $$\cos x(2\cos x - 1) = 0$$Отсюда:
Ответ: $$x = \frac{\pi}{2} + \pi k, k \in \mathbb{Z}$$; $$x = \pm \frac{\pi}{3} + 2\pi n, n \in \mathbb{Z}$$
1. $$x = \frac{\pi}{2} + \pi k, k \in \mathbb{Z}$$
$$2\pi \le \frac{\pi}{2} + \pi k \le \frac{7\pi}{2}$$ $$2 \le \frac{1}{2} + k \le \frac{7}{2}$$ $$\frac{3}{2} \le k \le 3$$Так как $$k \in \mathbb{Z}$$, то $$k = 2, 3$$
При $$k = 2$$: $$x = \frac{\pi}{2} + 2\pi = \frac{5\pi}{2}$$
При $$k = 3$$: $$x = \frac{\pi}{2} + 3\pi = \frac{7\pi}{2}$$
2. $$x = \frac{\pi}{3} + 2\pi n, n \in \mathbb{Z}$$
$$2\pi \le \frac{\pi}{3} + 2\pi n \le \frac{7\pi}{2}$$ $$2 \le \frac{1}{3} + 2n \le \frac{7}{2}$$ $$\frac{5}{6} \le n \le \frac{19}{12}$$Так как $$n \in \mathbb{Z}$$, то $$n = 1$$
При $$n = 1$$: $$x = \frac{\pi}{3} + 2\pi = \frac{7\pi}{3}$$
3. $$x = -\frac{\pi}{3} + 2\pi n, n \in \mathbb{Z}$$
$$2\pi \le -\frac{\pi}{3} + 2\pi n \le \frac{7\pi}{2}$$ $$2 \le -\frac{1}{3} + 2n \le \frac{7}{2}$$ $$\frac{7}{6} \le n \le \frac{23}{12}$$Так как $$n \in \mathbb{Z}$$, то $$n = 2$$
При $$n = 1$$: $$x = -\frac{\pi}{3} + 4\pi = \frac{11\pi}{3}$$
Ответ: $$\frac{5\pi}{2}; \frac{7\pi}{2}; \frac{7\pi}{3}; \frac{11\pi}{3}$$