Решим тригонометрические уравнения:
- $$tg \alpha = 0$$
$$\alpha = \pi n, n \in Z$$
- $$tg \alpha = 1$$
$$\alpha = \frac{\pi}{4} + \pi n, n \in Z$$
- $$tg \alpha = -1$$
$$\alpha = -\frac{\pi}{4} + \pi n, n \in Z$$
- $$tg \alpha = \sqrt{3}$$
$$\alpha = \frac{\pi}{3} + \pi n, n \in Z$$
- $$tg \alpha = -\sqrt{3}$$
$$\alpha = -\frac{\pi}{3} + \pi n, n \in Z$$
- $$tg \alpha = \frac{\sqrt{3}}{3}$$
$$\alpha = \frac{\pi}{6} + \pi n, n \in Z$$
- $$tg \alpha = -\frac{\sqrt{3}}{3}$$
$$\alpha = -\frac{\pi}{6} + \pi n, n \in Z$$
- $$tg \alpha = 2$$
$$\alpha = arctg 2 + \pi n, n \in Z$$
- $$tg \alpha = -3$$
$$\alpha = arctg (-3) + \pi n, n \in Z$$
$$\alpha = - arctg (3) + \pi n, n \in Z$$
- $$tg \alpha = 5$$
$$\alpha = arctg 5 + \pi n, n \in Z$$
- $$tg \alpha = \frac{1}{2}$$
$$\alpha = arctg \frac{1}{2} + \pi n, n \in Z$$
- $$tg \alpha = -\frac{1}{3}$$
$$\alpha = - arctg \frac{1}{3} + \pi n, n \in Z$$
Ответ: смотри выше.