Решаю тригонометрические уравнения.
$$x = arctg(1) + \pi n, n \in Z$$
$$x = \frac{\pi}{4} + \pi n, n \in Z$$
Ответ: $$x = \frac{\pi}{4} + \pi n, n \in Z$$
$$x = arctg(-\frac{\sqrt{3}}{3}) + \pi n, n \in Z$$
$$x = -\frac{\pi}{6} + \pi n, n \in Z$$
Ответ: $$x = -\frac{\pi}{6} + \pi n, n \in Z$$
$$x = arctg(0) + \pi n, n \in Z$$
$$x = \pi n, n \in Z$$
Ответ: $$x = \pi n, n \in Z$$
$$x = arctg(-2) + \pi n, n \in Z$$
$$x = -arctg(2) + \pi n, n \in Z$$
Ответ: $$x = -arctg(2) + \pi n, n \in Z$$
$$tg x = 1$$
$$x = arctg(1) + \pi n, n \in Z$$
$$x = \frac{\pi}{4} + \pi n, n \in Z$$
Ответ: $$x = \frac{\pi}{4} + \pi n, n \in Z$$
$$tg x = -\frac{\sqrt{3}}{3}$$
$$x = arctg(-\frac{\sqrt{3}}{3}) + \pi n, n \in Z$$
$$x = -\frac{\pi}{6} + \pi n, n \in Z$$
Ответ: $$x = -\frac{\pi}{6} + \pi n, n \in Z$$
Пусть $$t = tg x$$, тогда
$$t^2 - 6t + 5 = 0$$
$$D = (-6)^2 - 4 \cdot 1 \cdot 5 = 36 - 20 = 16$$
$$t_1 = \frac{6 + \sqrt{16}}{2 \cdot 1} = \frac{6 + 4}{2} = \frac{10}{2} = 5$$
$$t_2 = \frac{6 - \sqrt{16}}{2 \cdot 1} = \frac{6 - 4}{2} = \frac{2}{2} = 1$$
$$tg x = 5$$
$$x = arctg(5) + \pi n, n \in Z$$
$$tg x = 1$$
$$x = arctg(1) + \pi n, n \in Z$$
$$x = \frac{\pi}{4} + \pi n, n \in Z$$
Ответ: $$x = arctg(5) + \pi n, n \in Z$$; $$x = \frac{\pi}{4} + \pi n, n \in Z$$
Пусть $$t = tg x$$, тогда
$$t^2 - 2t - 3 = 0$$
$$D = (-2)^2 - 4 \cdot 1 \cdot (-3) = 4 + 12 = 16$$
$$t_1 = \frac{2 + \sqrt{16}}{2 \cdot 1} = \frac{2 + 4}{2} = \frac{6}{2} = 3$$
$$t_2 = \frac{2 - \sqrt{16}}{2 \cdot 1} = \frac{2 - 4}{2} = \frac{-2}{2} = -1$$
$$tg x = 3$$
$$x = arctg(3) + \pi n, n \in Z$$
$$tg x = -1$$
$$x = arctg(-1) + \pi n, n \in Z$$
$$x = -\frac{\pi}{4} + \pi n, n \in Z$$
Ответ: $$x = arctg(3) + \pi n, n \in Z$$; $$x = -\frac{\pi}{4} + \pi n, n \in Z$$
$$tg (\pi + x) = tg x$$
$$tg x = \sqrt{3}$$
$$x = arctg(\sqrt{3}) + \pi n, n \in Z$$
$$x = \frac{\pi}{3} + \pi n, n \in Z$$
Ответ: $$x = \frac{\pi}{3} + \pi n, n \in Z$$
$$2 ctg x + ctg x = \sqrt{3}$$
$$3 ctg x = \sqrt{3}$$
$$ctg x = \frac{\sqrt{3}}{3}$$
$$tg x = \sqrt{3}$$
$$x = arctg(\sqrt{3}) + \pi n, n \in Z$$
$$x = \frac{\pi}{3} + \pi n, n \in Z$$
Ответ: $$x = \frac{\pi}{3} + \pi n, n \in Z$$
$$-\sqrt{3} \cdot (-tg x) = 1$$
$$\sqrt{3} tg x = 1$$
$$tg x = \frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3}$$
$$x = arctg(\frac{\sqrt{3}}{3}) + \pi n, n \in Z$$
$$x = \frac{\pi}{6} + \pi n, n \in Z$$
Ответ: $$x = \frac{\pi}{6} + \pi n, n \in Z$$
$$-ctg x - ctg x = 2$$
$$-2 ctg x = 2$$
$$ctg x = -1$$
$$tg x = -1$$
$$x = arctg(-1) + \pi n, n \in Z$$
$$x = -\frac{\pi}{4} + \pi n, n \in Z$$
Ответ: $$x = -\frac{\pi}{4} + \pi n, n \in Z$$