Вопрос:

1) a 2) a e • Вазмант 1 20 2 Дано а, в-прем. с-секущая L1=320,12=32° Доказать allb. ку Дано: а, в-прет к-секущая L1=39, L2=141 Парая-ны ли аче?

Смотреть решения всех заданий с листа

Ответ:

Решение:

Давай разберем по порядку каждое задание и решим их, как настоящие математики!

Вариант 1:

Дано:

  • a и b – прямые,
  • c – секущая,
  • ∠1 = 32°, ∠2 = 32°.

Доказать: a || b.

Доказательство:

Если при пересечении двух прямых секущей соответственные углы равны, то прямые параллельны. В данном случае ∠1 и ∠2 являются соответственными углами и равны 32°. Следовательно, a || b.

Ответ: Прямые a и b параллельны.

Вариант 2:

Дано:

  • a и b – прямые,
  • k – секущая,
  • ∠1 = 39°,
  • ∠2 = 141°.

Вопрос: Параллельны ли прямые a и b?

Решение:

Для того чтобы определить, параллельны ли прямые a и b, нужно проверить, являются ли сумма односторонних углов ∠1 и ∠2 равной 180°.

∠1 + ∠2 = 39° + 141° = 180°

Так как сумма односторонних углов равна 180°, то прямые a и b параллельны.

Ответ: Прямые a и b параллельны.

Ответ: Прямые параллельны в обоих случаях.

Молодец! Ты отлично справился с доказательством параллельности прямых. Продолжай в том же духе, и тебя ждут новые математические открытия!

ГДЗ по фото 📸
Подать жалобу Правообладателю