Решим данный пример:
$$b = \pi$$ $$\frac{5}{6} + (-\frac{2}{4}) = $$ $$\frac{5}{6} - \frac{1}{2} = $$ $$\frac{5}{6} - \frac{1 \cdot 3}{2 \cdot 3} = $$ $$\frac{5}{6} - \frac{3}{6} = \frac{2}{6} = \frac{1}{3}$$
$$-\frac{5}{6} + 4 + \frac{2}{12} = $$ $$-\frac{5}{6} + 4 + \frac{1}{6} = $$ $$4 - \frac{5}{6} + \frac{1}{6} = $$ $$4 - \frac{4}{6} = 4 - \frac{2}{3} = $$ $$\frac{4 \cdot 3}{3} - \frac{2}{3} = \frac{12}{3} - \frac{2}{3} = \frac{10}{3} = 3\frac{1}{3}$$
$$-\frac{9}{6} + \frac{7}{6} + \frac{4}{8} = $$ $$-\frac{3}{2} + \frac{7}{6} + \frac{1}{2} = $$ $$-\frac{3 \cdot 3}{2 \cdot 3} + \frac{7}{6} + \frac{1 \cdot 3}{2 \cdot 3} = $$ $$-\frac{9}{6} + \frac{7}{6} + \frac{3}{6} = \frac{-9+7+3}{6} = $$ $$\frac{1}{6}$$
Ответ: $$b = \pi$$ $$\frac{5}{6} + (-\frac{2}{4}) = \frac{1}{3}$$ $$-\frac{5}{6} + 4 + \frac{2}{12} = 3\frac{1}{3}$$ $$-\frac{9}{6} + \frac{7}{6} + \frac{4}{8} = \frac{1}{6}$$