Решим представленные уравнения:
B) $$\frac{2x^2+3x}{3-x} = \frac{x-x^2}{x-3};$$
ОДЗ: $$x
e 3$$
$$\frac{2x^2+3x}{3-x} = -\frac{x-x^2}{3-x};$$
$$2x^2+3x = -x+x^2;$$
$$x^2+4x = 0;$$
$$x(x+4) = 0;$$
$$x_1 = 0;$$
$$x_2 = -4.$$
Ответ: $$x_1 = 0; x_2 = -4.$$
Г) $$\frac{x^2-2x}{2x-1} = \frac{4x-3}{1-2x};$$
ОДЗ: $$x
e \frac{1}{2}$$
$$\frac{x^2-2x}{2x-1} = -\frac{4x-3}{2x-1};$$
$$x^2-2x = -4x+3;$$
$$x^2+2x-3 = 0;$$
По теореме Виета:
$$x_1+x_2 = -2;$$
$$x_1 \cdot x_2 = -3;$$
$$x_1 = -3;$$
$$x_2 = 1.$$
Ответ: $$x_1 = -3; x_2 = 1.$$
B) $$\frac{5x-2}{x+2} = \frac{6x-21}{x-3};$$
ОДЗ: $$x
e -2; x
e 3$$
$$(5x-2)(x-3) = (6x-21)(x+2);$$
$$5x^2-15x-2x+6 = 6x^2+12x-21x-42;$$
$$x^2-16x-48 = 0;$$
$$D = 256 + 192 = 448;$$
$$x_1 = \frac{16 + \sqrt{448}}{2} = \frac{16 + 8\sqrt{7}}{2} = 8+4\sqrt{7};$$
$$x_2 = \frac{16 - \sqrt{448}}{2} = \frac{16 - 8\sqrt{7}}{2} = 8-4\sqrt{7}.$$
Ответ: $$x_1 = 8+4\sqrt{7}; x_2 = 8-4\sqrt{7}.$$
Г) $$\frac{2y-5}{y+5} = \frac{3y+21}{2y-1};$$
ОДЗ: $$y
e -5; y
e \frac{1}{2}$$
$$(2y-5)(2y-1) = (3y+21)(y+5);$$
$$4y^2-2y-10y+5 = 3y^2 + 15y + 21y + 105;$$
$$y^2 - 48y - 100 = 0;$$
$$D = 2304 + 400 = 2704;$$
$$y_1 = \frac{48 + \sqrt{2704}}{2} = \frac{48 + 52}{2} = 50;$$
$$y_2 = \frac{48 - \sqrt{2704}}{2} = \frac{48 - 52}{2} = -2.$$
Ответ: $$y_1 = 50; y_2 = -2.$$
B) $$\frac{3y^2 + y-24}{9-y^2} = -2;$$
ОДЗ: $$y
e \pm 3$$
$$3y^2 + y - 24 = -18 + 2y^2;$$
$$y^2 + y - 6 = 0;$$
По теореме Виета:
$$y_1 + y_2 = -1;$$
$$y_1 \cdot y_2 = -6;$$
$$y_1 = -3;$$
$$y_2 = 2.$$
Но, $$y
e -3$$, значит:
Ответ: $$y = 2.$$
Д) $$\frac{4x+2}{1+2x} = x-6;$$
ОДЗ: $$x
e -\frac{1}{2}$$
$$\frac{2(2x+1)}{2x+1} = x-6;$$
$$x-6 = 2;$$
$$x = 8.$$
Ответ: $$x = 8.$$
Г) $$\frac{9}{x+3} = 2x-1;$$
ОДЗ: $$x
e -3$$
$$9 = (2x-1)(x+3);$$
$$9 = 2x^2+6x-x-3;$$
$$2x^2+5x-12 = 0;$$
$$D = 25+96 = 121;$$
$$x_1 = \frac{-5 + \sqrt{121}}{4} = \frac{-5 + 11}{4} = \frac{3}{2};$$
$$x_2 = \frac{-5 - \sqrt{121}}{4} = \frac{-5 - 11}{4} = -4.$$
Ответ: $$x_1 = \frac{3}{2}; x_2 = -4.$$