30. Сократите дробь:
а)
\[\frac{y^2-16}{3y+12} = \frac{(y-4)(y+4)}{3(y+4)} = \frac{y-4}{3}\]
Ответ: \[\frac{y-4}{3}\]
б)
\[\frac{5x-15y}{x^2-9y^2} = \frac{5(x-3y)}{(x-3y)(x+3y)} = \frac{5}{x+3y}\]
Ответ: \[\frac{5}{x+3y}\]
в)
\[\frac{(c+2)^2}{7c^2+14c} = \frac{(c+2)^2}{7c(c+2)} = \frac{c+2}{7c}\]
Ответ: \[\frac{c+2}{7c}\]
г)
\[\frac{6cd-18c}{(d-3)^2} = \frac{6c(d-3)}{(d-3)^2} = \frac{6c}{d-3}\]
Ответ: \[\frac{6c}{d-3}\]
б)
\[\frac{15b-20c}{10b} = \frac{5(3b-4c)}{10b} = \frac{3b-4c}{2b}\]
Ответ: \[\frac{3b-4c}{2b}\]
г)
\[\frac{6y+12}{3(y+2)} = \frac{6(y+2)}{3(y+2)} = 2\]
Ответ: \[2\]