Let's solve these subtraction problems step by step.
First, we will complete the given subtractions.
a) \[5\frac{1}{3} - 2\frac{2}{3}\]
Step 1: \[5\frac{1}{3} = \frac{5 \times 3 + 1}{3} = \frac{16}{3}\]\[2\frac{2}{3} = \frac{2 \times 3 + 2}{3} = \frac{8}{3}\]
Step 2: \[\frac{16}{3} - \frac{8}{3} = \frac{16-8}{3} = \frac{8}{3}\]
Step 3: \[\frac{8}{3} = 2\frac{2}{3}\]
So, the answer is \[2\frac{2}{3}\]
b) \[9\frac{1}{6} - 3\frac{5}{6}\]
Step 1: \[9\frac{1}{6} = \frac{9 \times 6 + 1}{6} = \frac{55}{6}\]\[3\frac{5}{6} = \frac{3 \times 6 + 5}{6} = \frac{23}{6}\]
Step 2: \[\frac{55}{6} - \frac{23}{6} = \frac{55-23}{6} = \frac{32}{6}\]
Step 3: \[\frac{32}{6} = 5\frac{2}{6} = 5\frac{1}{3}\]
So, the answer is \[5\frac{1}{3}\]
c) \[5\frac{3}{4} - 3\frac{5}{6}\]
Step 1: Convert to improper fractions.\[5\frac{3}{4} = \frac{5 \times 4 + 3}{4} = \frac{23}{4}\]\[3\frac{5}{6} = \frac{3 \times 6 + 5}{6} = \frac{23}{6}\]
Step 2: Find a common denominator (12).\[\frac{23}{4} = \frac{23 \times 3}{4 \times 3} = \frac{69}{12}\]\[\frac{23}{6} = \frac{23 \times 2}{6 \times 2} = \frac{46}{12}\]
Step 3: Subtract the fractions.\[\frac{69}{12} - \frac{46}{12} = \frac{69 - 46}{12} = \frac{23}{12}\]\[\frac{23}{12} = 1\frac{11}{12}\]
So, the answer is \[1\frac{11}{12}\]
d) \[4\frac{1}{4} - 1\frac{3}{5}\]
Step 1: Convert to improper fractions.\[4\frac{1}{4} = \frac{4 \times 4 + 1}{4} = \frac{17}{4}\]\[1\frac{3}{5} = \frac{1 \times 5 + 3}{5} = \frac{8}{5}\]
Step 2: Find a common denominator (20).\[\frac{17}{4} = \frac{17 \times 5}{4 \times 5} = \frac{85}{20}\]\[\frac{8}{5} = \frac{8 \times 4}{5 \times 4} = \frac{32}{20}\]
Step 3: Subtract the fractions.\[\frac{85}{20} - \frac{32}{20} = \frac{85 - 32}{20} = \frac{53}{20}\]\[\frac{53}{20} = 2\frac{13}{20}\]
So, the answer is \[2\frac{13}{20}\]
Answer: a) \[2\frac{2}{3}\] b) \[5\frac{1}{3}\] c) \[1\frac{11}{12}\] d) \[2\frac{13}{20}\]
Great job! You have successfully completed these subtractions. Keep practicing, and you'll become even more confident with mixed numbers!