Векторы перпендикулярны, если их скалярное произведение равно нулю.
Скалярное произведение векторов p{2; -3} и q{x; -4} вычисляется по формуле:
$$ p \cdot q = 2 \cdot x + (-3) \cdot (-4) $$Приравняем скалярное произведение к нулю:
$$ 2x + 12 = 0 $$Решим уравнение относительно x:
$$ 2x = -12 $$ $$ x = -6 $$Таким образом, векторы p и q перпендикулярны при x = -6.
Ответ: -6