Привет! Сейчас мы вместе решим эти задачи. Не волнуйся, я помогу тебе разобраться с каждой из них шаг за шагом.
Задача 1:
На полу стоит мальчик массой 40 кг. Какое давление он производит на пол, если общая площадь половин его ботинок, соприкасающихся с полом, равна 250 см³?
Давай разберем по порядку:
Сначала переведем площадь из см² в м²:
250 см² = 0.025 м²
Теперь вспомним формулу давления:
\[ P = \frac{F}{A} \]
Где:
- P - давление,
- F - сила (в данном случае, сила тяжести мальчика),
- A - площадь.
Сила тяжести мальчика находится как:
\[ F = mg \]
Где:
- m - масса (40 кг),
- g - ускорение свободного падения (примерно 9.8 м/с²).
Подставим значения:
\[ F = 40 \cdot 9.8 = 392 \, \text{Н} \]
Теперь найдем давление:
\[ P = \frac{392}{0.025} = 15680 \, \text{Па} \]
Ответ: 15680 Па
Задача 2:
Рассчитайте давление воды на наибольшей глубине Азовского моря, равной 14 м.
Давай разберем по порядку:
Для расчета давления на глубине используем формулу:
\[ P = \rho g h \]
Где:
- P - давление,
- \(\rho\) - плотность воды (примерно 1000 кг/м³),
- g - ускорение свободного падения (примерно 9.8 м/с²),
- h - глубина (14 м).
Подставим значения:
\[ P = 1000 \cdot 9.8 \cdot 14 = 137200 \, \text{Па} \]
Ответ: 137200 Па
Задача 3:
С какой силой давит воздух на поверхность стола, длина которого 1,2 м, ширина 60 см, если атмосферное давление равно 760 мм рт. ст.?
Давай разберем по порядку:
Сначала переведем атмосферное давление из мм рт. ст. в Па:
760 мм рт. ст. = 101325 Па (это стандартное атмосферное давление)
Теперь найдем площадь стола:
\[ A = 1.2 \cdot 0.6 = 0.72 \, \text{м}^2 \]
Сила давления находится как:
\[ F = PA \]
Подставим значения:
\[ F = 101325 \cdot 0.72 = 72954 \, \text{Н} \]
Ответ: 72954 Н
Задача 4:
Определите силу давления керосина на дно бака площадью 4,5 дм², если бак наполнен до высоты 25 см.
Давай разберем по порядку:
Сначала переведем все единицы в систему СИ:
4,5 дм² = 0.045 м²
25 см = 0.25 м
Плотность керосина примерно 800 кг/м³.
Давление керосина на дно бака:
\[ P = \rho g h \]
Подставим значения:
\[ P = 800 \cdot 9.8 \cdot 0.25 = 1960 \, \text{Па} \]
Сила давления:
\[ F = PA \]
Подставим значения:
\[ F = 1960 \cdot 0.045 = 88.2 \, \text{Н} \]
Ответ: 88.2 Н
Задача 5:
Манометр, установленный на высоте 1,2 м от дна резервуара с нефтью, показывает давление 2 Н/см³. Какова высота нефти в резервуаре?
Давай разберем по порядку:
Сначала переведем давление в Па:
2 Н/см³ = 20000 Па
Давление на высоте манометра:
\[ P = \rho g h \]
Где h - высота столба нефти над манометром. Плотность нефти примерно 800 кг/м³.
Выразим h:
\[ h = \frac{P}{\rho g} \]
Подставим значения:
\[ h = \frac{20000}{800 \cdot 9.8} = 2.55 \, \text{м} \]
Теперь добавим высоту от дна резервуара до манометра:
Общая высота нефти: 2.55 + 1.2 = 3.75 м
Ответ: 3.75 м
Задача 6:
Сообщающиеся сосуды заполнены водой. На сколько повысится уровень воды в левой трубке, если в правую налить керосина столько, что он образует столб высотой 30 см?
Давай разберем по порядку:
Высота столба керосина: h_к = 30 см = 0.3 м.
Плотность керосина: \(\rho_к\) ≈ 800 кг/м³.
Плотность воды: \(\rho_в\) = 1000 кг/м³.
Когда наливают керосин, уровень воды в левой трубке поднимется на некоторую высоту x, а в правой (над уровнем раздела сред) опустится на ту же высоту x. Давление в обеих трубках на уровне раздела сред должно быть одинаковым.
Запишем уравнение равенства давлений:
\[ \rho_в g x = \rho_к g (h_к - x) \]
Сократим g и раскроем скобки:
\[ \rho_в x = \rho_к h_к - \rho_к x \]
Соберем члены с x в одной стороне:
\[ x (\rho_в + \rho_к) = \rho_к h_к \]
Выразим x:
\[ x = \frac{\rho_к h_к}{\rho_в + \rho_к} \]
Подставим значения:
\[ x = \frac{800 \cdot 0.3}{1000 + 800} = \frac{240}{1800} = 0.133 \, \text{м} = 13.3 \, \text{см} \]
Ответ: 13.3 см
Теперь ты знаешь, как решать эти задачи! Помни, главное - внимательно читать условие и применять правильные формулы. У тебя все получится!