Вопрос:

Докажите, что при всех допустимых значениях a значение выражения (2a/(a^2-1)+(a-1)/(2a+2))·2a/(a+1)+1/(1-a) не зависит от a.

Ответ:

\[\left( \frac{2a}{a^{2} - 1} + \frac{a - 1}{2a + 2} \right) \cdot \frac{2a}{a + 1} + \frac{1}{1 - a} = 1\]

\[1)\frac{2a^{\backslash 2}}{(a - 1)(a + 1)} + \frac{a - 1^{\backslash a - 1}}{2(a + 1)} =\]

\[= \frac{4a + a^{2} - 2a + 1}{2(a^{2} - 1)} = \frac{a^{2} + 2a + 1}{2(a^{2} - 1)} =\]

\[= \frac{(a + 1)²}{2(a - 1)(a + 1)} = \frac{a + 1}{2(a - 1)}\]

\[2)\ \frac{a + 1}{2(a - 1)} \cdot \frac{2a}{a + 1} = \frac{(a + 1) \cdot 2a}{2(a - 1)(a + 1)} =\]

\[= \frac{a}{a - 1}\]

\[3)\frac{a}{a - 1} - \frac{1}{a - 1} = \frac{a - 1}{a - 1} = 1\ \]

\[Что\ и\ требовалось\ доказать.\]

Похожие

© 2021 Copyright. Все права защищены. Правообладатель SIA Ksenokss.
Адрес: 1069, Курземес проспект 106/45, Рига, Латвия.
Тел.: +371 29-851-888 E-mail: [email protected]