e) Решим уравнение: $$\frac{1}{y^2+y} = \frac{2}{5y+14}$$.
$$1 \cdot (5y+14) = 2 \cdot (y^2+y)$$.
$$5y + 14 = 2y^2 + 2y$$.
$$0 = 2y^2 + 2y - 5y - 14$$.
$$2y^2 - 3y - 14 = 0$$.
$$D = b^2 - 4ac = (-3)^2 - 4 \cdot 2 \cdot (-14) = 9 + 112 = 121$$.
$$y_1 = \frac{-b + \sqrt{D}}{2a} = \frac{3 + \sqrt{121}}{2 \cdot 2} = \frac{3 + 11}{4} = \frac{14}{4} = \frac{7}{2} = 3.5$$.
$$y_2 = \frac{-b - \sqrt{D}}{2a} = \frac{3 - \sqrt{121}}{2 \cdot 2} = \frac{3 - 11}{4} = \frac{-8}{4} = -2$$.
Для $$y = 3.5$$:
$$y^2+y = (3.5)^2 + 3.5 = 12.25 + 3.5 = 15.75
eq 0$$.
$$5y+14 = 5 \cdot 3.5 + 14 = 17.5 + 14 = 31.5
eq 0$$.
Для $$y = -2$$:
$$y^2+y = (-2)^2 + (-2) = 4 - 2 = 2
eq 0$$.
$$5y+14 = 5 \cdot (-2) + 14 = -10 + 14 = 4
eq 0$$.
Оба корня подходят.
Ответ: $$y_1 = 3.5$$, $$y_2 = -2$$