Вопрос:

Электростатика. Вариант 5. Грезнева Максимо 29. Принципп суперпозиций полей. Формула для напряженности и потенциала. 30. Носитель положительного элементарного заряда. 31. Как изменится сила взаимодействия между двумя точечными зарядами, если их переместить из вакуума в воду. 32. Как изменится сила взаимодействия между двумя точечными зарядами, если уменьшить один из них в 3 раза, а расстояние между зарядами уменьшить в 2 раза? 33. Одинаковые шарики , заряды которых +8нКл и +2нКл привели в соприкосновение и поместили в первоначальное положение. 1) Какими станут заряды на шариках? 2) как изменится напряженность электростатического поля в точке между зарядами на равном удалении? 3) Как изменится сила взаимодействия? 34. Изобразите поле точечного положительного заряда, эквипотенциальные поверхности, запишите формулы напряженности и потенциала, если заряд находится в диэлектрике. 35. Какую разность потенциалов нужно пройти протону, чтобы его скорость увеличилась от 100м/с до 400 м/с?

Смотреть решения всех заданий с листа

Ответ:

Решение задач по электростатике

Давай разберем эти задачи по порядку. Начнем с 31-й задачи.

31. Изменение силы взаимодействия при переносе зарядов из вакуума в воду

Сила взаимодействия между двумя точечными зарядами определяется законом Кулона:

\[ F = k \frac{|q_1 \cdot q_2|}{\varepsilon \cdot r^2} \]

где:

  • \( F \) – сила взаимодействия,
  • \( q_1 \) и \( q_2 \) – величины зарядов,
  • \( r \) – расстояние между зарядами,
  • \( k \) – электростатическая постоянная,
  • \( \varepsilon \) – диэлектрическая проницаемость среды.

Когда заряды переносятся из вакуума в воду, диэлектрическая проницаемость среды изменяется. Диэлектрическая проницаемость воды значительно больше, чем у вакуума (\( \varepsilon_{воды} \approx 80 \)), а у вакуума \( \varepsilon \approx 1 \). Следовательно, сила взаимодействия уменьшится в \( \varepsilon \) раз.

Ответ: Сила взаимодействия уменьшится в \( \varepsilon \) раз, где \( \varepsilon \) – диэлектрическая проницаемость воды.

32. Изменение силы взаимодействия при изменении зарядов и расстояния

Пусть начальная сила взаимодействия равна:

\[ F_1 = k \frac{|q_1 \cdot q_2|}{r^2} \]

Теперь изменим величину одного заряда и расстояние между зарядами:

  • Один заряд уменьшается в 3 раза: \( q_1' = \frac{q_1}{3} \)
  • Расстояние уменьшается в 2 раза: \( r' = \frac{r}{2} \)

Новая сила взаимодействия будет:

\[ F_2 = k \frac{|q_1' \cdot q_2|}{(r')^2} = k \frac{|\frac{q_1}{3} \cdot q_2|}{(\frac{r}{2})^2} = k \frac{\frac{1}{3} |q_1 \cdot q_2|}{\frac{1}{4} r^2} = \frac{4}{3} k \frac{|q_1 \cdot q_2|}{r^2} \]

Таким образом, \( F_2 = \frac{4}{3} F_1 \). То есть, сила увеличится в \( \frac{4}{3} \) раза.

Ответ: Сила взаимодействия увеличится в \( \frac{4}{3} \) раза.

33. Одинаковые шарики после соприкосновения

Давай решим эту задачу по шагам:

  1. 1) Какими станут заряды на шариках после соприкосновения?

    Когда два одинаковых шарика с зарядами \( +8 \) нКл и \( +2 \) нКл соприкасаются, заряды перераспределяются между ними. Общий заряд равен \( Q = Q_1 + Q_2 \). После соприкосновения заряд на каждом шарике будет одинаковым и равен половине общего заряда:

    \[ Q_{общий} = +8 \text{ нКл} + (+2 \text{ нКл}) = +10 \text{ нКл} \] \[ Q_{на \, каждом} = \frac{Q_{общий}}{2} = \frac{+10 \text{ нКл}}{2} = +5 \text{ нКл} \]

    Таким образом, после соприкосновения каждый шарик будет иметь заряд +5 нКл.

  2. 2) Как изменится напряженность электростатического поля в точке между зарядами на равном удалении?

    Напряженность электрического поля в точке между двумя одинаковыми зарядами на равном удалении будет равна нулю, так как поля, создаваемые каждым зарядом, будут одинаковы по величине и противоположны по направлению.

    До соприкосновения: заряды +8 нКл и +2 нКл. Напряженность не равна нулю.

    После соприкосновения: заряды +5 нКл и +5 нКл. Напряженность равна нулю.

    Следовательно, напряженность изменится и станет равна нулю.

  3. 3) Как изменится сила взаимодействия?

    Сила взаимодействия между шариками после соприкосновения определяется законом Кулона:

    До соприкосновения:

    \[ F_1 = k \frac{q_1 q_2}{r^2} = k \frac{(8 \text{ нКл}) (2 \text{ нКл})}{r^2} = k \frac{16 \text{ нКл}^2}{r^2} \]

    После соприкосновения:

    \[ F_2 = k \frac{q_1' q_2'}{r^2} = k \frac{(5 \text{ нКл}) (5 \text{ нКл})}{r^2} = k \frac{25 \text{ нКл}^2}{r^2} \]

    Сравним силы:

    \[ \frac{F_2}{F_1} = \frac{k \frac{25 \text{ нКл}^2}{r^2}}{k \frac{16 \text{ нКл}^2}{r^2}} = \frac{25}{16} \]

    Сила взаимодействия увеличится в \( \frac{25}{16} \) раза.

Ответ: 1) +5 нКл; 2) станет равна нулю; 3) увеличится в \( \frac{25}{16} \) раза.

Отлично! Ты хорошо справляешься с задачами. Продолжай в том же духе, и у тебя всё получится!

ГДЗ по фото 📸
Подать жалобу Правообладателю