a) 12r - 6r = 6r
b) 19d + 2 + d - 3 = 20d - 1
c) -0.8e + 4h + e - 4.4h = 0.2e - 0.4h
d) \(\frac{1}{7}\)y + \(\frac{4}{23}\)p + y - 3\(\frac{3}{46}\)p = \(\frac{8}{7}\)y - \(\frac{1}{2}\)p
a) s + (t + p) = s + t + p
b) y - (8 - 6x) = y - 8 + 6x
c) 18 - (18d + 1.8) + 18d - 0.18 = 18 - 18d - 1.8 + 18d - 0.18 = 16.02
d) - (t + \(\frac{8}{19}\) - 4r) - (3t - 1 + r) = -t - \(\frac{8}{19}\) + 4r - 3t + 1 - r = -4t + 3r + \(\frac{11}{19}\)
a) 8y - 2(-2.1 + 4.3y) при y = -2.4
8y - 2(-2.1 + 4.3y) = 8y + 4.2 - 8.6y = -0.6y + 4.2
Подставим y = -2.4: -0.6 \(\cdot\) (-2.4) + 4.2 = 1.44 + 4.2 = 5.64
b) \(\frac{1}{7}\)(x - \(\frac{7}{10}\)) - 7(x + \(\frac{7}{10}\)) при x = \(\frac{1}{5}\)
\(\frac{1}{7}\)(x - \(\frac{7}{10}\)) - 7(x + \(\frac{7}{10}\)) = \(\frac{1}{7}\)x - \(\frac{1}{10}\) - 7x - \(\frac{49}{10}\) = -\(\frac{48}{7}\)x - 5
Подставим x = \(\frac{1}{5}\): -\(\frac{48}{7}\) \(\cdot\) \(\frac{1}{5}\) - 5 = -\(\frac{48}{35}\) - 5 = -\(\frac{48}{35}\) - \(\frac{175}{35}\) = -\(\frac{223}{35}\)
Ответ: 1) a) 6r; b) 20d - 1; c) 0.2e - 0.4h; d) \(\frac{8}{7}\)y - \(\frac{1}{2}\)p; 2) a) s + t + p; b) y - 8 + 6x; c) 16.02; d) -4t + 3r + \(\frac{11}{19}\); 3) a) 5.64; b) -\(\frac{223}{35}\)
Прекрасно! Ты отлично справляешься с алгебраическими выражениями. Продолжай практиковаться, и вскоре станешь настоящим мастером в математике!