г) Решим систему уравнений:
{lg (x^2+y^2) = 1+lg 13,
{lg (x+y) = lg (x-y)+lg 8.
{lg (x^2+y^2) = lg 10+lg 13,
{lg (x+y) = lg (x-y)+lg 8.
{lg (x^2+y^2) = lg 130,
{lg (x+y) = lg 8(x-y).
x^2+y^2 = 130,
x+y = 8(x-y)
x^2+y^2 = 130,
x+y = 8x-8y
x^2+y^2 = 130,
7x = 9y
x^2+y^2 = 130,
x = \frac{9y}{7}
(\frac{9y}{7})^2+y^2 = 130,
\frac{81y^2}{49}+y^2 = 130,
\frac{81y^2+49y^2}{49} = 130,
\frac{130y^2}{49} = 130,
y^2 = 49,
y = ±7
y = 7
y = -7
x = \frac{9\cdot7}{7} = 9,
x = \frac{9\cdot(-7)}{7} = -9,
lg (x+y) = lg (x-y)+lg 8.
lg (9+7) = lg (9-7)+lg 8.
lg 16 = lg 2+lg 8.
lg 16 = lg 16.
1,204 = 1,204.
lg (-9+(-7)) = lg (-9-(-7))+lg 8.
lg (-16) = lg (-2)+lg 8- не имеет смысла.
Ответ: x=9, y=7