Let's simplify the given expression:
$$\frac{8m + 8n}{a^2} \cdot \frac{5a^{10}}{m^2 - n^2}$$
First, we can factor out 8 from the numerator in the first fraction:
$$\frac{8(m + n)}{a^2} \cdot \frac{5a^{10}}{m^2 - n^2}$$
Next, we can factor the denominator in the second fraction using the difference of squares:
$$m^2 - n^2 = (m + n)(m - n)$$
So, the expression becomes:
$$\frac{8(m + n)}{a^2} \cdot \frac{5a^{10}}{(m + n)(m - n)}$$
Now we can cancel out the common factor $$(m + n)$$ from the numerator and denominator:
$$\frac{8}{a^2} \cdot \frac{5a^{10}}{(m - n)}$$
Now, multiply the numerators and the denominators:
$$\frac{8 \cdot 5a^{10}}{a^2(m - n)}$$
$$\frac{40a^{10}}{a^2(m - n)}$$
Finally, we can simplify the expression by dividing $$a^{10}$$ by $$a^2$$:
$$a^{10} / a^2 = a^{10-2} = a^8$$
So, the simplified expression is:
$$\frac{40a^8}{m - n}$$
Ответ: $$\frac{40a^8}{m - n}$$