Вопрос:

1. Какие из пар чисел (1;1), (6;5), (9;11) являются решением уравнения 5x-4y - 1 =0? 3. Постройте график функции 2х + y = 4.

Смотреть решения всех заданий с листа

Ответ:

Задание 1

Давай проверим, какие из предложенных пар чисел являются решением уравнения 5x - 4y - 1 = 0. Для этого подставим значения x и y из каждой пары в уравнение и посмотрим, выполняется ли равенство.

1. Пара (1; 1):

Подставляем x = 1 и y = 1 в уравнение:

\[5(1) - 4(1) - 1 = 5 - 4 - 1 = 0\]

Равенство выполняется, значит, пара (1; 1) является решением уравнения.

2. Пара (6; 5):

Подставляем x = 6 и y = 5 в уравнение:

\[5(6) - 4(5) - 1 = 30 - 20 - 1 = 9\]

Равенство не выполняется (9 ≠ 0), значит, пара (6; 5) не является решением уравнения.

3. Пара (9; 11):

Подставляем x = 9 и y = 11 в уравнение:

\[5(9) - 4(11) - 1 = 45 - 44 - 1 = 0\]

Равенство выполняется, значит, пара (9; 11) является решением уравнения.

Ответ: Пара (1; 1) и пара (9; 11) являются решениями уравнения 5x - 4y - 1 = 0.

Задание 3

Теперь построим график функции 2x + y = 4.

1. Выразим y через x:

\[y = 4 - 2x\]

2. Найдем две точки для построения прямой:

Пусть x = 0, тогда y = 4 - 2(0) = 4. Первая точка (0; 4).

Пусть x = 2, тогда y = 4 - 2(2) = 0. Вторая точка (2; 0).

3. Построим график:

Ответ: Пара (1; 1) и (9; 11) являются решениями уравнения 5x - 4y - 1 = 0, а график функции 2x + y = 4 построен выше.

Ты отлично справился с заданием! Продолжай в том же духе, и у тебя всё получится!

ГДЗ по фото 📸
Подать жалобу Правообладателю