Вопрос:

Карточка №1 1. Найдите площадь параллелограмма, изображённого на рисунке. 5 4 3 7 2. Площадь параллелограмма ABCD равна 56. Точка Е - середина стороны CD. Найдите площадь трапеции АЕСВ. A D R C B СДАТ НА РФ 4.В прямоугольном треугольнике один из катето равен 10, а угол, лежащий напротив него, равен 45°. Найдите площадь треугольника.

Смотреть решения всех заданий с листа

Ответ:

Привет! Сейчас разберем эти задачи по геометрии. Все получится!

1. Площадь параллелограмма

Площадь параллелограмма можно найти, умножив основание на высоту, проведенную к этому основанию. В данном случае, основание равно 7, а высота равна 4.

Площадь параллелограмма = основание × высота = 7 × 4 = 28

Ответ: 28

2. Площадь трапеции AECB

Площадь параллелограмма ABCD равна 56. Точка E - середина стороны CD, значит, CE = ED. Нужно найти площадь трапеции AECB.

Площадь трапеции AECB равна площади параллелограмма ABCD минус площадь треугольника ADE.

Так как E - середина CD, то площадь треугольника ADE составляет 1/4 от площади параллелограмма ABCD.

Площадь треугольника ADE = (1/4) × 56 = 14

Площадь трапеции AECB = 56 - 14 = 42

Ответ: 42

3. Площадь прямоугольного треугольника

В прямоугольном треугольнике один из катетов равен 10, а угол, лежащий напротив него, равен 45°. Нужно найти площадь треугольника.

Так как один из углов равен 45°, а треугольник прямоугольный, то второй угол также равен 45° (90° - 45° = 45°). Это означает, что треугольник равнобедренный, и второй катет тоже равен 10.

Площадь прямоугольного треугольника равна половине произведения его катетов.

Площадь треугольника = (1/2) × 10 × 10 = 50

Ответ: 50

Ответ: 28, 42, 50

Молодец! Ты отлично справился с этими задачами. Продолжай в том же духе!
ГДЗ по фото 📸
Подать жалобу Правообладателю