Вычислите:
-
$$6\sqrt{1\frac{7}{9}} - 4 = 6\sqrt{\frac{16}{9}} - 4 = 6 \cdot \frac{4}{3} - 4 = 8 - 4 = 4$$
-
$$\sqrt{7.2} \cdot \sqrt{20} = \sqrt{7.2 \cdot 20} = \sqrt{144} = 12$$
-
$$\frac{\sqrt{216}}{\sqrt{6}} = \sqrt{\frac{216}{6}} = \sqrt{36} = 6$$
-
$$\sqrt{5^4 \cdot 3^2} = \sqrt{5^4} \cdot \sqrt{3^2} = 5^2 \cdot 3 = 25 \cdot 3 = 75$$
Упростите выражение:
-
$$4\sqrt{20} - \sqrt{125} = 4\sqrt{4 \cdot 5} - \sqrt{25 \cdot 5} = 4 \cdot 2\sqrt{5} - 5\sqrt{5} = 8\sqrt{5} - 5\sqrt{5} = 3\sqrt{5}$$
-
$$(3\sqrt{2} + \sqrt{18})\sqrt{2} = (3\sqrt{2} + \sqrt{9 \cdot 2})\sqrt{2} = (3\sqrt{2} + 3\sqrt{2})\sqrt{2} = 6\sqrt{2} \cdot \sqrt{2} = 6 \cdot 2 = 12$$
-
$$(5 - \sqrt{2})^2 = 5^2 - 2 \cdot 5 \cdot \sqrt{2} + (\sqrt{2})^2 = 25 - 10\sqrt{2} + 2 = 27 - 10\sqrt{2}$$
Освободитесь от иррациональности в знаменателе:
-
$$\frac{1}{3\sqrt{2}} = \frac{1 \cdot \sqrt{2}}{3\sqrt{2} \cdot \sqrt{2}} = \frac{\sqrt{2}}{3 \cdot 2} = \frac{\sqrt{2}}{6}$$
-
$$\frac{6}{5 - \sqrt{2}} = \frac{6(5 + \sqrt{2})}{(5 - \sqrt{2})(5 + \sqrt{2})} = \frac{6(5 + \sqrt{2})}{25 - 2} = \frac{6(5 + \sqrt{2})}{23}$$
Сократите дробь
-
$$\frac{3 - \sqrt{3}}{\sqrt{6} - \sqrt{2}} = \frac{\sqrt{3}(\sqrt{3} - 1)}{\sqrt{2}(\sqrt{3} - 1)} = \frac{\sqrt{3}}{\sqrt{2}} = \frac{\sqrt{3} \cdot \sqrt{2}}{\sqrt{2} \cdot \sqrt{2}} = \frac{\sqrt{6}}{2}$$
-
$$\frac{a - 25}{\sqrt{a} - 5} = \frac{(\sqrt{a} - 5)(\sqrt{a} + 5)}{\sqrt{a} - 5} = \sqrt{a} + 5$$
Ответ: Решения выше.