Решим данные примеры по порядку.
1. $$27^{\frac{2}{3}} +25^{\frac{1}{2}}-100^{\frac{1}{2}} +16^{\frac{1}{4}}$$
$$27^{\frac{2}{3}} = (27^{\frac{1}{3}})^2 = 3^2 = 9$$
$$25^{\frac{1}{2}} = \sqrt{25} = 5$$
$$100^{\frac{1}{2}} = \sqrt{100} = 10$$
$$16^{\frac{1}{4}} = \sqrt[4]{16} = 2$$
Следовательно,
$$9 + 5 - 10 + 2 = 6$$
Ответ: 6
2. $$8^{\frac{2}{3}}\cdot4^{-1}$$; $$(4-2^{0})^{-3}$$
$$8^{\frac{2}{3}} = (8^{\frac{1}{3}})^2 = 2^2 = 4$$
$$4^{-1} = \frac{1}{4}$$
$$8^{\frac{2}{3}}\cdot4^{-1} = 4 \cdot \frac{1}{4} = 1$$
$$4-2^{0} = 4 - 1 = 3$$
$$(4-2^{0})^{-3} = 3^{-3} = \frac{1}{3^3} = \frac{1}{27}$$
Ответ: $$8^{\frac{2}{3}}\cdot4^{-1} = $$ extbf{1}; $$(4-2^{0})^{-3} = $$ extbf{1/27}
3. $$\sqrt[3]{8\cdot343} + \sqrt[4]{16\cdot625}$$
$$\sqrt[3]{8\cdot343} = \sqrt[3]{8} \cdot \sqrt[3]{343} = 2 \cdot 7 = 14$$
$$\sqrt[4]{16\cdot625} = \sqrt[4]{16} \cdot \sqrt[4]{625} = 2 \cdot 5 = 10$$
Следовательно,
$$14 + 10 = 24$$
Ответ: 24
4. $$log_{7} 343-lg1000 + log_{3} 243$$
$$log_{7} 343 = log_{7} 7^3 = 3$$
$$lg1000 = log_{10} 1000 = log_{10} 10^3 = 3$$
$$log_{3} 243 = log_{3} 3^5 = 5$$
Следовательно,
$$3 - 3 + 5 = 5$$
Ответ: 5
5. $$log_{\frac{1}{6}} 216+log_{2} 8-log_{11} \sqrt{11}$$
$$log_{\frac{1}{6}} 216 = log_{\frac{1}{6}} 6^3 = log_{\frac{1}{6}} (\frac{1}{6})^{-3} = -3$$
$$log_{2} 8 = log_{2} 2^3 = 3$$
$$log_{11} \sqrt{11} = log_{11} 11^{\frac{1}{2}} = \frac{1}{2}$$
Следовательно,
$$-3 + 3 - \frac{1}{2} = -\frac{1}{2}$$
Ответ: -1/2
6. $$8^{2-log_{8} 2}$$, $$4^{2+log_{4} 2}$$
$$8^{2-log_{8} 2} = 8^2 \div 8^{log_{8} 2} = 64 \div 2 = 32$$
$$4^{2+log_{4} 2} = 4^2 \cdot 4^{log_{4} 2} = 16 \cdot 2 = 32$$
Ответ: $$8^{2-log_{8} 2} = $$ extbf{32}, $$4^{2+log_{4} 2} = $$ extbf{32}
7. $$3log_{3} 6+log_{3} 5-log_{3} 40$$; $$log_{3} 36-2log_{3} 2$$
$$3log_{3} 6+log_{3} 5-log_{3} 40 = log_{3} 6^3 + log_{3} 5 - log_{3} 40 = log_{3} (216 \cdot 5) - log_{3} 40 = log_{3} 1080 - log_{3} 40 = log_{3} (1080 \div 40) = log_{3} 27 = log_{3} 3^3 = 3$$
$$log_{3} 36-2log_{3} 2 = log_{3} 36 - log_{3} 2^2 = log_{3} 36 - log_{3} 4 = log_{3} (36 \div 4) = log_{3} 9 = log_{3} 3^2 = 2$$
Ответ: $$3log_{3} 6+log_{3} 5-log_{3} 40 = $$ extbf{3}; $$log_{3} 36-2log_{3} 2 = $$ extbf{2}