Пусть $$x$$ - количество одноклассников Маши (если бы все были в школе). Тогда:
Если бы все пришли, то ушло бы $$4x$$ конфет, и осталось бы меньше 4. Значит, $$85 - 4x < 4$$. Это значит $$4x > 81$$, так что $$x > 20.25$$.
Раз 5 человек не было, то раздали $$5(x-5)$$ конфет. Использовали 85 конфет всего, значит $$5(x-5) \le 85$$.
Т.е. $$x-5$$ - число одноклассников присутствовавших в школе.
Значит $$5(x-5) \le 85$$ или $$x-5 \le 17$$ или $$x \le 22$$.
Также знаем, что всего раздали 85 конфет, и каждому досталось по 5. Т.е. если из общего числа конфет вычесть количество выданных, то должно что-то остаться, а остаток должен быть меньше 4.
То есть $$x$$ между 20.25 и 22, т.е. либо 21, либо 22.
Если x = 21, то на 16 человек раздали по 5 конфет, итого раздали $$16 \times 5 = 80$$ конфет. Осталось $$85 - 80 = 5$$ конфет.
Если x = 22, то на 17 человек раздали по 5 конфет, итого раздали $$17 \times 5 = 85$$ конфет. Осталось $$85 - 85 = 0$$ конфет.
По условию, у Маши должно остаться меньше 4 конфет. Из вариантов подходит только второй.
Значит, осталось 0 конфет.
Ответ: **0** конфет.