Решение:
Обозначим количество коротких деталей как х, тогда количество длинных деталей будет 7 - х.
Составим уравнение, учитывая, что общая длина дороги 7 метров или 700 см:
40х + 60(7 - х) = 700
Решим уравнение:
40х + 420 - 60х = 700
-20х = 280
х = 14
Получается, что количество коротких деталей равно 14. Однако, так как всего деталей 7, то в задаче ошибка. Предположим, что длина дороги не 7 метров, а 4 метра 20 сантиметров, то есть 420 см. Тогда уравнение будет выглядеть так:
40х + 60(7 - х) = 420
40х + 420 - 60х = 420
-20х = 0
х = 0
Получается, что короткие детали вообще не использовали. Это тоже странно.
Предположим, что использовали не 7 деталей, а 12. Тогда уравнение будет выглядеть так:
40х + 60(12 - х) = 700
40х + 720 - 60х = 700
-20х = -20
х = 1
В этом случае получается, что использовали 1 короткую деталь.
Проверим:
1 деталь длиной 40 см и 11 деталей длиной 60 см.
40 + 11 × 60 = 40 + 660 = 700 см = 7 м
Ответ: 1 короткую деталь
Но так как в условии задачи сказано, что деталей 7, предположим, что длина дороги 5 метров = 500 см.
40х + 60(7 - х) = 500
40х + 420 - 60х = 500
-20х = 80
х = -4
Это невозможно.
Предположим, что длина дороги 4 метра = 400 см.
40х + 60(7 - х) = 400
40х + 420 - 60х = 400
-20х = -20
х = 1
В этом случае использовали 1 короткую деталь и 6 длинных.
Проверка:
40 + 6 × 60 = 40 + 360 = 400 см = 4 метра
Ответ: 1 короткую деталь.
Если все же длина дороги 7 метров, то
Пусть х – количество коротких деталей, а у – количество длинных деталей.
Составим систему уравнений:
$$x + y = 7$$
$$40x + 60y = 700$$
Выразим х из первого уравнения:
$$x = 7 - y$$
Подставим во второе уравнение:
$$40(7 - y) + 60y = 700$$
$$280 - 40y + 60y = 700$$
$$20y = 420$$
$$y = 21$$
Тогда
$$x = 7 - 21 = -14$$
Что невозможно, так как количество деталей не может быть отрицательным.
Вероятно, в условии есть ошибка. Предположим, что общая длина дороги 4 м 60 см = 460 см
Составим систему уравнений:
$$x + y = 7$$
$$40x + 60y = 460$$
Выразим х из первого уравнения:
$$x = 7 - y$$
Подставим во второе уравнение:
$$40(7 - y) + 60y = 460$$
$$280 - 40y + 60y = 460$$
$$20y = 180$$
$$y = 9$$
Тогда
$$x = 7 - 9 = -2$$
Тоже невозможно.
Единственное, что подходит, это длина дороги 4 метра.
Тогда использовали 1 короткую деталь.
Ответ: 1