Чтобы ответить на вопрос, может ли синус или косинус принимать указанные значения, нужно вспомнить, что область значений синуса и косинуса лежит в пределах от -1 до 1 включительно. То есть, $$-1 \le sin(x) \le 1$$ и $$-1 \le cos(x) \le 1$$. Проверим каждое из предложенных значений:
- 0,03: Это значение находится в пределах от -1 до 1. Значит, синус или косинус может принимать такое значение.
- $$ \frac{2}{3} $$: Это значение тоже находится в пределах от -1 до 1 (примерно 0,67). Значит, синус или косинус может принимать такое значение.
- $$ \frac{5}{3} $$: Это значение больше 1 (примерно 1,67). Значит, ни синус, ни косинус не могут принимать такое значение.
- $$ \frac{11}{13} $$: Это значение находится в пределах от -1 до 1 (примерно 0,85). Значит, синус или косинус может принимать такое значение.
- $$ \frac{13}{11} $$: Это значение больше 1 (примерно 1,18). Значит, ни синус, ни косинус не могут принимать такое значение.
- $$ \sqrt{2} $$: Это значение больше 1 (примерно 1,41). Значит, ни синус, ни косинус не могут принимать такое значение.
Ответ: Синус и косинус могут принимать значения 0,03, 2/3, 11/13. Значения 5/3, 13/11 и √2 не могут быть значениями синуса или косинуса.