Вопрос:

На координатной прямой отмечены точки А, В и С. Среди чисел \(\frac{5}{7}\), \(\frac{9}{7}\), \(1\frac{1}{7}\), \(\frac{13}{7}\) и \(\frac{25}{7}\) есть координаты всех трёх точек. Установите соответствие между точками и их координатами. В таблице под каждой точкой укажите номер соответствующей координаты.

Смотреть решения всех заданий с листа

Ответ:

Представим числа в виде десятичных дробей (приблизительно): \(\frac{5}{7} \approx 0,714\) \(\frac{9}{7} \approx 1,286\) \(1\frac{1}{7} \approx 1,143\) \(\frac{13}{7} \approx 1,857\) \(\frac{25}{7} \approx 3,571\)

Точка A расположена между 0 и 1, значит координата точки A равна \(\frac{5}{7}\). Это координата под номером 1.

Точка B расположена между 1 и 2, значит координата точки B равна \(\frac{9}{7}\) или \(1\frac{1}{7}\) или \(\frac{13}{7}\). Так как точка B расположена чуть дальше от 1, чем координата \(1\frac{1}{7}\) ближе всего к \(\frac{9}{7}\). Это координата под номером 2.

Точка C расположена между 1 и 2, значит координата точки C равна \(\frac{13}{7}\). Это координата под номером 3.

A B C
1 2 3

Ответ:

A B C
1 2 3
ГДЗ по фото 📸
Подать жалобу Правообладателю

Похожие