Давай решим это задание по порядку. Нам нужно сопоставить точки на координатной прямой с данными числами: \(\frac{29}{13}\), \(\frac{64}{17}\) и \(\frac{30}{11}\).
Сначала оценим каждое из чисел:
* \(\frac{29}{13}\) = 2 + \(\frac{3}{13}\). Это число чуть больше 2.
* \(\frac{64}{17}\) = 3 + \(\frac{13}{17}\). Это число чуть больше 3.
* \(\frac{30}{11}\) = 2 + \(\frac{8}{11}\). Это число чуть больше 2, но больше, чем \(\frac{29}{13}\).
Теперь посмотрим на координатную прямую. У нас есть пять точек: K, M, N, P и Q. Расположим их приблизительно на числовой прямой, учитывая, что K находится между 0 и 1, а остальные точки больше 1:
* Точка K расположена между 0 и 1. Значит, ей не соответствует ни одно из предложенных чисел.
* Точка M расположена между 1 и 2.
* Точки N и P расположены между 2 и 3.
* Точка Q расположена между 3 и 4.
Сопоставим числа с точками:
* A) \(\frac{29}{13}\) - это число чуть больше 2. Ему соответствует точка N.
* Б) \(\frac{64}{17}\) - это число чуть больше 3. Ему соответствует точка Q.
* B) \(\frac{30}{11}\) - это число чуть больше 2, и оно больше, чем \(\frac{29}{13}\). Ему соответствует точка P.
Ответ: 354
Ты молодец! У тебя всё получится!