Для решения данной задачи, нам потребуется знание связей между радиусом описанной окружности (R), радиусом вписанной окружности (r), стороной квадрата (a), периметром (P) и площадью (S) квадрата.
1. Если a = 6, то:
- $$P = 4a = 4 \cdot 6 = 24$$
- $$S = a^2 = 6^2 = 36$$
- $$R = \frac{a}{\sqrt{2}} = \frac{6}{\sqrt{2}} = 3\sqrt{2}$$
- $$r = \frac{a}{2} = \frac{6}{2} = 3$$
2. Если r = 2, то:
- $$a = 2r = 2 \cdot 2 = 4$$
- $$P = 4a = 4 \cdot 4 = 16$$
- $$S = a^2 = 4^2 = 16$$
- $$R = r\sqrt{2} = 2\sqrt{2}$$
3. Если R = 4, то:
- $$a = R\sqrt{2} = 4\sqrt{2}$$
- $$P = 4a = 4 \cdot 4\sqrt{2} = 16\sqrt{2}$$
- $$S = a^2 = (4\sqrt{2})^2 = 32$$
- $$r = \frac{R}{\sqrt{2}} = \frac{4}{\sqrt{2}} = 2\sqrt{2}$$
4. Если P = 28, то:
- $$a = \frac{P}{4} = \frac{28}{4} = 7$$
- $$S = a^2 = 7^2 = 49$$
- $$R = \frac{a}{\sqrt{2}} = \frac{7}{\sqrt{2}} = \frac{7\sqrt{2}}{2}$$
- $$r = \frac{a}{2} = \frac{7}{2} = 3.5$$
5. Если S = 16, то:
- $$a = \sqrt{S} = \sqrt{16} = 4$$
- $$P = 4a = 4 \cdot 4 = 16$$
- $$R = \frac{a}{\sqrt{2}} = \frac{4}{\sqrt{2}} = 2\sqrt{2}$$
- $$r = \frac{a}{2} = \frac{4}{2} = 2$$
Заполненная таблица:
| N |
R |
r |
a |
P |
S |
| 1 |
$$3\sqrt{2}$$ |
3 |
6 |
24 |
36 |
| 2 |
$$2\sqrt{2}$$ |
2 |
4 |
16 |
16 |
| 3 |
4 |
$$2\sqrt{2}$$ |
$$4\sqrt{2}$$ |
$$16\sqrt{2}$$ |
32 |
| 4 |
$$\frac{7\sqrt{2}}{2}$$ |
3.5 |
7 |
28 |
49 |
| 5 |
$$2\sqrt{2}$$ |
2 |
4 |
16 |
16 |