Контрольные задания > На рисунке $MN \parallel PQ$, $AB$ – секущая, угол 1 на $110°$ больше угла 2.
Найдите $∠3$.
Решение.
1) $∠1 = ∠3$, так как ___________, поэтому угол 3 на $110°$ больше угла 2, т. е. $∠3 =∠2 +$________
2) $∠3$ и $∠2$ __________ при пересечении __________ прямых $MN$ и $PQ$ секущей $AB$, а потому $∠3 + ∠2 =$
3) Итак, $∠2 + 110° + ∠2 =$, откуда $∠2 =$, следовательно, $∠3 = ∠2 + =$
Ответ.
$∠3=$
Вопрос:
На рисунке $$MN \parallel PQ$$, $$AB$$ – секущая, угол 1 на $$110°$$ больше угла 2.
Найдите $$∠3$$.
Решение.
1) $$∠1 = ∠3$$, так как ___________, поэтому угол 3 на $$110°$$ больше угла 2, т. е. $$∠3 =∠2 +$$________
2) $$∠3$$ и $$∠2$$ __________ при пересечении __________ прямых $$MN$$ и $$PQ$$ секущей $$AB$$, а потому $$∠3 + ∠2 =$$
3) Итак, $$∠2 + 110° + ∠2 =$$, откуда $$∠2 =$$, следовательно, $$∠3 = ∠2 + =$$
Ответ.
$$∠3=$$
$$∠1 = ∠3$$, так как это соответственные углы при параллельных прямых $$MN$$ и $$PQ$$ и секущей $$AB$$, поэтому угол 3 на $$110°$$ больше угла 2, т. е. $$∠3 =∠2 +$$110°.
$$∠3$$ и $$∠2$$ внутренние односторонние углы при пересечении параллельных прямых $$MN$$ и $$PQ$$ секущей $$AB$$, а потому $$∠3 + ∠2 = 180°$$.