Площадь круга вычисляется по формуле \( S = \pi r^2 \), где \( S \) - площадь, \( r \) - радиус круга, а \( \pi \) (пи) - математическая константа, примерно равная 3.14.
1. **Найдём радиус круга:**
Известна площадь катка \( S = 78.5 \text{ м}^2 \). Нам нужно найти радиус \( r \). Преобразуем формулу для площади:
\( r^2 = \frac{S}{\pi} \)
Подставим значения:
\( r^2 = \frac{78.5}{3.14} \)
\( r^2 \approx 25 \)
Чтобы найти радиус, извлечем квадратный корень из обеих частей:
\( r = \sqrt{25} \)
\( r = 5 \text{ м} \)
2. **Найдём диаметр круга:**
Диаметр (\( d \)) равен удвоенному радиусу: \( d = 2r \).
Подставляем найденный радиус:
\( d = 2 \cdot 5 \)
\( d = 10 \text{ м} \)
**Ответ:** Диаметр катка равен 10 метров. Радиус катка равен 5 метров.